Loading...
Research Project
Untitled
Funder
Authors
Publications
Optical nonlinearity in Tandem SI-C photodetectors
Publication . Louro, Paula; Vieira, Manuela; Vieira, Manuel Augusto
The behavior of tandem pin heterojunctions based on a-SiC: H alloys is investigated under different optical and electrical bias conditions. The devices are optimized to act as optically selective wavelength filters. Depending on the device configuration (optical gaps, thickness, sequence of cells in the stack structure) and on the applied voltage (positive or negative) and optical bias (wavelength, intensity, frequency) it is possible to combine the wavelength discrimination function with the self amplification of the signal. This wavelength nonlinearity allows the amplification or the rejection of a weak signal-impulse. The device works as an active tunable optical filter for wavelength selection and can be used as an add/drop multiplexer (ADM) which enables data to enter and leave an optical network bit stream without having to demultiplex the stream. Results show that, even under weak transient input signals, the background wavelength controls the output signal. This nonlinearity, due to the transient asymmetrical light penetration of the input channels across the device together with the modification on the electrical field profile due to the optical bias, allows tuning an input channel without demultiplexing the stream. This high optical nonlinearity makes the optimized devices attractive for the amplification of all optical signals. Transfer characteristics effects due to changes in steady state light, control d.c. voltage and applied light pulses are presented. Based on the experimental results and device configuration an optoelectronic model is developed. The transfer characteristics effects due to changes in steady state light, dc control voltage or applied light pulses are simulated and compared with the experimental data. A good agreement was achieved.
Seven channel wavelength demultiplexer using a tandem a:SiC-H/a:Si-H photo sensor
Publication . Silva, Vítor; Barata, Manuel; Vieira, Manuel; Louro, Paula; Vieira, Manuela
The pi'npin photo device is a tandem a: SiC-H / a: Si-H heterostructures. The device is electrically biased and can also be optically biased by ultra-violet illumination of the front or back surfaces. The front surface is also used for several pulsed single wavelength signals within the visible range. Experimental results show that the ultra-violet bias illumination at the front surface of the device enhances wavelengths longer than 500 nm while quenching the wavelengths shorter than 500 nm. The opposite happens when the bias is set at the back surface of the device; wavelengths shorter than 500 nm are enhanced while the ones above are quenched. Several digital applications have been built using the p'inpin device. This paper focuses on the use of the pi'npin device for seven channel Wavelength Division Multiplexing (WDM) digital communication using Manchester coded signals, with a single wavelength for each channel. The seven channels form a frame with 7*256 bits with a preamble for signal intensity and synchronization purposes. Results show that the clustering of the received signal enables the successful recovery of the seven channel data using the front and back illumination of the surfaces of the pi'npin photo device.
Tunnig optical A-Sic/A-Si active filters by UV bias light in the visible and infrared spectral ranges
Publication . Vieira, Manuela; Vieira, Manuel; Rodrigues, Isabel Maria Cabrita; Vaz da Silva, V; Louro, Paula
Visible range to telecom band spectral translation is accomplished using an amorphous SiC pi'n/pin wavelength selector under appropriate front and back optical light bias. Results show that background intensity works as selectors in the infrared region, shifting the sensor sensitivity. Low intensities select the near-infrared range while high intensities select the visible part according to its wavelength. Here, the optical gain is very high in the infrared/red range, decreases in the green range, stays close to one in the blue region and strongly decreases in the near-UV range. The transfer characteristics effects due to changes in steady state light intensity and wavelength backgrounds are presented. The relationship between the optical inputs and the output signal is established. A capacitive optoelectronic model is presented and tested using the experimental results. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Logical functions in a tandem SiC device
Publication . Vaz da Silva, V; Vieira, Manuel; Louro, Paula; Barata, Manuel; Vieira, Manuela
This study demonstrates logical functions based on SiC technology. The device consists of a p-i’(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure with low conductivity doped layers. Experimental optoelectronic characterization of the fabricated device is presented and shows the feasibility of tailoring channel bandwidth and wavelength by optical bias through illumination in the back and front sides with violet light.
Two digital light signals are applied to the front side of the device while violet light steadily shines either at the back or front sides. Each digital light signal is composed by two wavelengths, one from the long and the other from the short visible wavelength range. One digital signal is the Red–Blue pair and the other the Green–Violet. The NOT logical function is shown with the Red–Blue pair likewise with the Green–Violet pair. The background biasing either at front or at the back side allows for an inverted signal or non inverted signal. Experimental results show and explain the interaction of two digital signal pairs and the identification of the logical AND, OR and XOR operations by the selection of the violet biasing illumination side.
SiC pinpin photonic for linking the visible spectrum to the telecom gap
Publication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Fantoni, Alessandro; Vaz da Silva, V
Expanding far beyond traditional applications at telecommunications wavelengths, the SiC photonic devices has recently proven its merits for working with visible range optical signals. Reconfigurable wavelength selectors are essential sub-systems for implementing reconfigurable WDM networks and optical signal processing. Visible range to telecom band spectral translation in SiC/Si can be accomplished using wavelength selector under appropriated optical bias, acting as reconfigurable active filters. In this paper we present a monolithically integrated wavelength selector based on a multilayer SiC/Si integrated optical filters that requires optical switches to select wavelengths. The selector filter is realized by using double pin/pin a-SiC:H photodetector with front and back biased optical gating elements. Red, green, blue and violet communication channels are transmitted together, each one with a specific bit sequence. The combined optical signal is analyzed by reading out the generated photocurrent, under different background wavelengths applied either from the front or the back side. The backgrounds acts as channel selectors that selects one or more channels by splitting portions of the input multi-channel optical signals across the front and back photodiodes. The transfer characteristics effects due to changes in steady state light, irradiation side and frequency are presented. The relationship between the optical inputs and the digital output levels is established. (C) 2014 Elsevier B.V. All rights reserved.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDT
Funding Award Number
PTDC/EEA-ELC/111854/2009