Repository logo
 

Search Results

Now showing 1 - 3 of 3
  • Hyperspectral compressive sensing on low energy consumption board
    Publication . Nascimento, Jose; Martin, Gabriel
    Hyperspectral imaging instruments allow remote Earth exploration by measuring hundreds of spectral bands (at different wavelength channels) for the same area of the Earth surface. The acquired data cube comprises several GBs per flight, which have attracted attention to onboard compression techniques. Typically these compression techniques are expensive from the computational point of view. This paper presents a compressive sensing method implementation on a low power consumption Graphic Processing Unit. The experiments are conducted on a Jetson TX1 board, which is well suited to perform vector operations such as dot products. These experiments have been performed to demonstrate the applicability, in terms of accuracy and time consuming, of these methods for onboard processing. The results show that by using this low power consumption GPU it is possible to obtain real-time performance with a very limited power requirements.
  • Parallel hyperspectral compressive sensing method on GPU
    Publication . Bernabe, Sergio; Martin, Gabriel; Nascimento, Jose
    Remote hyperspectral sensors collect large amounts of data per flight usually with low spatial resolution. It is known that the bandwidth connection between the satellite/airborne platform and the ground station is reduced, thus a compression onboard method is desirable to reduce the amount of data to be transmitted. This paper presents a parallel implementation of an compressive sensing method, called parallel hyperspectral coded aperture (P-HYCA), for graphics processing units (GPU) using the compute unified device architecture (CUDA). This method takes into account two main properties of hyperspectral dataset, namely the high correlation existing among the spectral bands and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. Experimental results conducted using synthetic and real hyperspectral datasets on two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN, reveal that the use of GPUs can provide real-time compressive sensing performance. The achieved speedup is up to 20 times when compared with the processing time of HYCA running on one core of the Intel i7-2600 CPU (3.4GHz), with 16 Gbyte memory.
  • Parallel hyperspectral unmixing method via split augmented lagrangian on GPU
    Publication . Sevilla, Jorge; Martin, Gabriel; Nascimento, Jose
    One of the main problems of hyperspectral data analysis is the presence of mixed pixels due to the low spatial resolution of such images. Linear spectral unmixing aims at inferring pure spectral signatures and their fractions at each pixel of the scene. The huge data volumes acquired by hyperspectral sensors put stringent requirements on processing and unmixing methods. This letter proposes an efficient implementation of the method called simplex identification via split augmented Lagrangian (SISAL) which exploits the graphics processing unit (GPU) architecture at low level using Compute Unified Device Architecture. SISAL aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The proposed implementation is performed in a pixel-by-pixel fashion using coalesced accesses to memory and exploiting shared memory to store temporary data. Furthermore, the kernels have been optimized to minimize the threads divergence, therefore achieving high GPU occupancy. The experimental results obtained for the simulated and real hyperspectral data sets reveal speedups up to 49 times, which demonstrates that the GPU implementation can significantly accelerate the method's execution over big data sets while maintaining the methods accuracy.