Repository logo
 

Search Results

Now showing 1 - 5 of 5
  • Bifurcation structures in a 2D exponential diffeomorphism with Allee effect
    Publication . Rocha, J. Leonel; Taha, Abdel-Kaddous
    An embedding of one-dimensional generic growth functions into a two-dimensional diffeomorphism is considered. This family of unimodal maps naturally incorporates a key item of ecological and biological research: the Allee effect. Consequently, the presence of this species extinction phenomenon leads us to a new definition of bifurcation for this two-dimensional exponential diffeomorphism: Allee’s effect bifurcation. The stability and the nature of the fixed points of the two-dimensional diffeomorphism are analyzed, by studying the corresponding contour lines. Fold and flip bifurcation structures of this exponential diffeomorphism are investigated, in which there are flip codimension-2 bifurcation points and cusp points, when some parameters evolve. Numerical studies are included.
  • Allee's effect bifurcation in generalized logistic maps
    Publication . Rocha, J. Leonel; Taha, Abdel-Kaddous
    This paper concerns the study of the Allee effect on the dynamical behavior of a new class of generalized logistic maps. The fundamentals of the dynamics of this 4-parameter family of one-dimensional maps are presented. A complete classification of the nature and stability of its fixed points is provided. The main results relate to the Allee effect bifurcation: a new type of bifurcation introduced for this class of unimodal maps. A necessary and sufficient condition so that the Allee fixed point is a snap-back repeller is established. In addition, in the parameters space is defined an Allee's effect region, which determines the existence of an essential extinction for the generalized logistic maps. Local and global bifurcations of generalized logistic maps are investigated.
  • Allee's dynamics and bifurcation structures in von Bertalanffy's population size functions
    Publication . Rocha, J. Leonel; Taha, Abdel-Kaddous; Fournier-Prunaret, D.
    The interest and the relevance of the study of the population dynamics and the extinction phenomenon are our main motivation to investigate the induction of Allee Effect in von Bertalanffy's population size functions. The adjustment or correction factor of rational type introduced allows us to analyze simultaneously strong and weak Allee's functions and functions with no Allee effect, whose classification is dependent on the stability of the fixed point x = 0. This classification is founded on the concepts of strong and weak Allee's effects to the population growth rates associated. The transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, is verified with the evolution of the rarefaction critical density or Allee's limit. The existence of cusp points on a fold bifurcation curve is related to this phenomenon of transition on Allee's dynamics. Moreover, the "foliated" structure of the parameter plane considered is also explained, with respect to the evolution of the Allee limit. The bifurcation analysis is based on the configurations of fold and flip bifurcation curves. The chaotic semistability and the nonadmissibility bifurcation curves are proposed to this family of 1D maps, which allow us to define and characterize the corresponding Allee effect region.
  • Homoclinic and big bang bifurcations of an embedding of 1D Allee's functions into a 2D diffeomorphism
    Publication . Rocha, J. Leonel; Taha, Abdel-Kaddous; Fournier-Prunaret, D.
    In this work a thorough study is presented of the bifurcation structure of an embedding of one-dimensional Allee's functions into a two-dimensional diffeomorphism. A complete classification of the nature and stability of the fixed points, on the contour lines of the two-dimensional diffeomorphism, is provided. A necessary and sufficient condition so that the Allee fixed point is a snapback repeller is established. Sufficient conditions for the occurrence of homoclinic tangencies of a saddle fixed point of the two-dimensional diffeomorphism are also established, associated to the snapback repeller bifurcation of the endomorphism defined by the Allee functions. The main results concern homoclinic and big bang bifurcations of the diffeomorphism as "germinal" bifurcations of the Allee functions. Our results confirm previous predictions of structures of homoclinic and big bang bifurcation curves in dimension one and extend these studies to "local" concepts of Allee effect and big bang bifurcations to this two-dimensional exponential diffeomorphism.
  • Allee's dynamics and bifurcation structures in von Bertalanffy's population size functions
    Publication . Rocha, J. Leonel; Taha, Abdel-Kaddous; Fournier-Prunaret, D.
    The interest and the relevance of the study of the population dynamics and the extinction phenomenon are our main motivation to investigate the induction of Allee Effect in von Bertalanffy's population size functions. The adjustment or correction factor of rational type introduced allows us to analyze simultaneously strong and weak Allee's functions and functions with no Allee effect, whose classification is dependent on the stability of the fixed point x = 0. This classification is founded on the concepts of strong and weak Allee's effects to the population growth rates associated. The transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, is verified with the evolution of the rarefaction critical density or Allee's limit. The existence of cusp points on a fold bifurcation curve is related to this phenomenon of transition on Allee's dynamics. Moreover, the "foliated" structure of the parameter plane considered is also explained, with respect to the evolution of the Allee limit. The bifurcation analysis is based on the configurations of fold and flip bifurcation curves. The chaotic semistability and the nonadmissibility bifurcation curves are proposed to this family of 1D maps, which allow us to define and characterize the corresponding Allee effect region.