Repository logo
 
Loading...
Profile Picture
Person

Vieira Soares Pereira Dias, Ana Paula

Search Results

Now showing 1 - 7 of 7
  • Biodiesel glycerin valorization into oxygenated fuel additives
    Publication . Soares Dias, A. P.; Fonseca, Frederico G.; Catarino, Mónica; Gomes, João
    requires costly purification before commercialization. Production of oxygenated fuel additives is a potential route for glycerin valorization. Glycerin acetylation was carried out over heterogeneous acid catalysts (15%, glycerol weight basis) using glacial acetic acid (molar ratio=9). The catalysts, containing different amounts of phosphate species (P/Si from 10 to 20 atomic ratio), were prepared by wet impregnation of commercial silica with aqueous solutions of diammonium phosphate and ortho-phosphoric acid. X-ray diffraction patterns of calcined solids presented amorphous patterns like raw silica. The prepared catalysts presented, at 120 degrees C, glycerol conversion higher than 89.5% after 1 h of reaction, been diacetin the major product, with triacetin selectivities lower than 26.1%. Diacetin selectivity was found to be almost invariant with catalyst acidity thus underlining the relevance of catalyst porosity due to the large acetins molecules sizes. The slow rate of triacetin diffusion in narrow pores of catalyst might be responsible for the relatively low yield obtained. Surface phosphate species showed a slow rate of leaching in the reaction medium showing high catalyst stability.
  • Solvent assisted biodiesel production by co-processing beef tallow and soybean oil over calcium catalysts
    Publication . Dias, Ana Paula Soares; Ramos, Marta; Catarino, Mónica Inês; Puna, Jaime; Gomes, João
    Due to sustainability issues, biodiesel must be produced from low-grade fats and the conventional homogeneously-catalyzed processes must be replaced by more efficient and more profitable production processes such as heterogeneous ones. Biodiesel (fatty acids methyl esters, FAME) was produced from a mixture (50 wt%) of soybean oil and non-edible beef tallow over heterogeneous calcium-based catalysts obtained by calcination of scallop shells. In order to improve the catalytic performances, solvent assisted methanolysis was conducted using alcohols (ethanol, 1-propanol, isopropanol and isobutanol), acetone, methylcyclohexane, and tetrahydrofuran (THF) with Vmethanol/Vsolvent = 2.8. Catalytic data revealed that alcohol solvents adsorb competitively with methanol on the catalyst active sites reducing the FAME yield due to their slower alcoholysis rates. Hexane and methylcyclohexane are inadequate for methanolysis reactions since they are immiscible with methanol. THF and acetone are immiscible with the co-produced glycerin, which favors methyl esters formation by displacing the chemical equilibrium towards reaction products. Acetone performs better than THF (FAME yield gain of 14% against 3%) because of its higher miscibility with methanol. THF was the most effective solvent to avoid fat adsorption on the catalyst surface, a key factor for catalyst stability, and to improve the glycerin purity.
  • Co-processing lard soybean oil over Ca-based catalysts to greener biodiesel
    Publication . Soares Dias, A. P.; Catarino, Mónica; Gomes, João
    Fatty Acid Methyl Esters (FAME) were produced from lard/soybean oil (SBO) mixtures using a calcium-based heterogeneous catalyst. The green catalyst was prepared by scallop shell calcination at a relatively low temperature (800 degrees C) to minimize energy consumption. Images from Scanning Electron Microscopy showed agglomerates of a few tens micrometers with rhombohedral calcite crystallites studded with lime. X-ray diffractogram of fresh catalyst presented overlapped patterns of calcite and lime In tested conditions (methanol reflux temperature, 5% (fat mass basis), methanol fat = 12 molar ratio, and 150 min), the FAME yield reached 95% (mass) with SBO. However, only 75% FAME yield was obtained from pure lard since the active sites of the catalyst were partially neutralized by lard acidity. Co-processing lard/SBO mixtures attenuated the undesirable fat acidity drawback allowing FAME yields around 90% for mixtures containing less than 50% (mass) of lard. The low-grade fat content of the processed mixture showed no impact on the glycerin quality. Co-processing lard/SBO is a smart strategy to overcome the low-grade fats acidity in biodiesel production process thus providing a more sustainable biodiesel production route.
  • Calcium diglyceroxide as a catalyst for biodiesel production
    Publication . Catarino, Mónica Inês; Martins, Susana; Ana Paula Soares Dias; Pereira, Manuel; Gomes, João
    Calcium diglyceroxide (CaD) was used as the catalyst for biodiesel production through oil methanolysis. It was evaluated its catalytic behavior, its air expo- sure tolerance, and the Ca leaching. CaD catalyst was synthesized from food waste scallop shell derived CaO (obtained by calcination at 900 degrees C) by contacting with a mixture of equal volumes of glycerin and methanol at 65 degrees C for 2 h. The CaO obtained by calcination of scallop shell was used as reference catalyst. In standard reaction conditions (2.5 h, methanol reflux temperature, 5 wt% (oil basis) catalyst loading, and methanol: oil = 12:1 moral ratio), CaD presented lower catalytic activity than CaO (FAME yield of 92% against 99%, respectively). 24 h repined CaD presented improved catalytic behavior probably due to the formation of surface Ca - OH groups, achieving 96% of FAME yield. Thermogravimetry (TG) data showed that inorganic residue was larger for biodiesel than for glycerin, being CaD catalyst more soluble than CaO. Data showed that CaD is unstable under reaction conditions, suffering leaching, but the absence of Matter Organic Non-Glycerol (MONG) in the glycerin phase allows to neglect the homogeneous contribution of the leached catalyst. CaD formation during reaction contributes to FAME contamination with Ca and promotes catalyst deactivation thus being an undesired occurrence.
  • Biodiesel production processes and sustainable raw materials
    Publication . Ramos, Marta; Dias, Ana; Puna, Jaime; Gomes, João; Bordado, João
    Energy security and environmental concerns, related to the increasing carbon emissions, have prompted in the last years the search for renewable and sustainable fuels. Biodiesel, a mixture of fatty acids alkyl esters shows properties, which make it a feasible substitute for fossil diesel. Biodiesel can be produced using different processes and different raw materials. The most common, first generation, biodiesel is produced by methanolysis of vegetable oils using basic or acid homogeneous catalysts. The use of vegetable oils for biodiesel production raises serious questions about biodiesel sustainability. Used cooking oils and animal fats can replace the vegetable oils in biodiesel production thus allowing to produce a more sustainable biofuel. Moreover, methanol can be replaced by ethanol being totally renewable since it can be produced by biomass fermentation. The substitution of homogeneous catalyzed processes, nowadays used in the biodiesel industry, by heterogeneous ones can contribute to improve the biodiesel sustainability with simultaneous cost reduction. From the existing literature on biodiesel production, it stands out that several strategies can be adopted to improve the sustainability of biodiesel. A literature review is presented to underline the strategies allowing to improve the biodiesel sustainability.
  • The role of alkali dopants on the oil methanolysis behavior of lime catalyst: activity & stability
    Publication . Soares Dias, A. P.; Puna, Jaime; Gomes, João; Ramos, Marta; Rijo, Bruna; Bordado, João
    Heterogeneous basic catalysts, namely calcium oxide, are referred to as promising catalysts for biodiesel (FAME, fatty acid methyl esters) production since they can be easily separated from the reaction medium allowing them to operate in a continuous mode. Despite the relatively high catalytic activity of calcium catalysts, they present slower alcoholysis rates than homogeneous conventional catalysts (sodium or potassium methanoate). In order to improve the catalytic activity, CaO-based catalysts, modified with alkali elements (Li, Cs, Sr, and Mg) were prepared. Dopant element contents of 10% and 30%, as weight basis (5–50% molar), were introduced by wet impregnation using aqueous solutions of nitrate salts. The effect of calcination temperature (575°C and 800°C) on both activity and stability was studied. All the prepared catalysts, raw and alkali modified, showed pKa<15.0 when characterized by Hammett indicators in methanolic solution. Such basicity is characteristic of Ca hydroxide, thus indicating that the catalysts surfaces were covered with Ca-OH species. FAME yield, in soybean oil methanolysis, higher than 96% was obtained for the first batch reaction for all the tested catalysts showing that alkali dopants have an almost nihil effect on the catalysts performances. The deactivation tests performed with catalysts without intermediate reactivation showed that calcination temperature plays a major role in stability as it enhances the formation of calcium diglyceroxide. The presence of Ca hydroxide in fresh catalysts appears to be responsible for fast deactivation. The dopant elements prompt the catalysts deactivation. Catalysts calcined at higher temperatures showed slower deactivation, which can be due to the formation of larger particles, thus reducing the contact with the formed glycerin. Alkali dopants enhanced the CaO sintering for the highest calcination temperature. Calcium diglyceroxide formed during the reaction is responsible for deactivating the catalyst, due to leaching, and such effect is prompted by alkali dopants.
  • Dry washing biodiesel purification using fumed silica sorbent
    Publication . Catarino, Mónica; Ferreira, Eduardo; Soares Dias, A. P.; Gomes, João
    Aiming the decarbonization of the transport sector, biodiesel, obtained by alcoholysis of oils or animal fats, is currently mixed with conventional fossil diesel. For this purpose, biodiesel has to comply with the established quality standards and, therefore, the production process comprises purification steps, which need huge volumes of water. Thus, the biodiesel purification procedure must be improved in order to provide a greener and low-cost renewable fuel. Biodiesel (FAME) produced by methanolysis of soybean and waste frying oils over a heterogeneous calcium - based catalyst was purified by dry washing, using commercial silica sorbent (Sipernat 22 from Evonik). ATR-FTIR spectra of post-purification sorbents showed that silica was effective to remove unreacted oil species, glycerin and Ca soap from biodiesel and, contrary to the previously reported in the literature, it was also able to remove leached calcium from the biodiesel. For both feedsotcks, the highest purity was reached for the sorption test carried out at 45 degrees C during 60 min. Sorbent regeneration was evaluated using acetone, methanol, and isopropanol alcohols at room temperature during short contact time (5 min for 1 g of sorbent and 20 mL of solvent). All the tested solvents were effective to remove the adsorbed species from silica surface.