Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Infection biomarkers based on metabolomicsPublication . Araújo, Rúben; Bento, Luís; Fonseca, Tiago AH; Von Rekowski, Cristiana; Ribeiro Da Cunha, Bernardo; Calado, CecíliaCurrent infection biomarkers are highly limited since they have low capability to predict infection in the presence of confounding processes such as in non-infectious inflammatory processes, low capability to predict disease outcomes and have limited applications to guide and evaluate therapeutic regimes. Therefore, it is critical to discover and develop new and effective clinical infection biomarkers, especially applicable in patients at risk of developing severe illness and critically ill patients. Ideal biomarkers would effectively help physicians with better patient management, leading to a decrease of severe outcomes, personalize therapies, minimize antibiotics overuse and hospitalization time, and significantly improve patient survival. Metabolomics, by providing a direct insight into the functional metabolic outcome of an organism, presents a highly appealing strategy to discover these biomarkers. The present work reviews the desired main characteristics of infection biomarkers, the main metabolomics strategies to discover these biomarkers and the next steps for developing the area towards effective clinical biomarkers.
- Comparison of analytical methods of serum untargeted metabolomicsPublication . Fonseca, Tiago AH; Araújo, Rúben; Von Rekowski, Cristiana; Justino, Gonçalo C.; Oliveira, Maria Da Conceiçao; Bento, Luís; Calado, CecíliaMetabolomics has emerged as a powerful tool in the discovery of new biomarkers for medical diagnosis and prognosis. However, there are numerous challenges, such as the methods used to characterize the system metabolome. In the present work, the comparison of two analytical platforms to acquire the serum metabolome of critically ill patients was conducted. The untargeted serum metabolome analysis by ultraperformance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) enabled to identify a set of metabolites statistically different between deceased and discharged patients. This set of metabolites also enabled to develop a very good predictive model, based on linear discriminant analysis (LDA) with a sensitivity and specificity of 80% and 100%, respectively. Fourier Transform Infrared (FTIR) spectroscopy was also applied in a high-throughput, simple and rapid mode to analyze the serum metabolome. Despite this technique not enabling the identification of metabolites, it allowed to identify molecular fingerprints associated to each patient group, while leading to a good predictive model, based on principal component analysis-LDA, with a sensitivity and specificity of 100% and 90%, respectively. Therefore, both analytical techniques presented complementary characteristics, that should be further explored for metabolome characterization and application as for biomarkers discovery for medical diagnosis and prognosis.
- Predicting critically ill patients outcome in the ICU using UHPLC-HRMS dataPublication . Henrique Fonseca, Tiago Alexandre; Von Rekowski, Cristiana; Araújo, Rúben Alexandre Dinis; Oliveira, Maria Conceição; Bento, Luís; Justino, Gonçalo; Calado, Cecília; Domingues, Nuno A. S.; Gomes, Vítor; Topcuoglu, BulentThe available scores to predict patients’ outcomes in specific settings generally present low sensitivities and specificities when applied to intensive care units’ (ICUs) populations. Advancements in analytical techniques, notably Ultra-High Performance Liquid Chromatography- Mass Spectrometry (UHPLCHRMS) transformed biomarker identification, enabling a comprehensive profiling of biofluids, including serum. In the current work, untargeted metabolomics, utilizing UHPLC-HRMS serum analysis, was performed on 16 ICU patients, categorized as either discharged (n=8), or deceased (n=8) in average seven days post sample collection. Linear discriminant analysis (LDA) or principal component analysis (PCA)-LDA models involving different metabolite sets were developed, enabling to predict patients’ outcomes in the ICU with 92% accuracy and 83% sensitivity on validation datasets. These results highlight the advantages of UHPLC-HRMS as a platform capable of providing a set of clinically significant biomarkers to predict patients’ outcome. The available scores to predict patients’ outcomes in specific settings generally present low sensitivities and specificities when applied to intensive care units’ (ICUs) populations. Advancements in analytical techniques, notably Ultra-High Performance Liquid Chromatography- Mass Spectrometry (UHPLCHRMS) transformed biomarker identification, enabling a comprehensive profiling of biofluids, including serum. In the current work, untargeted metabolomics, utilizing UHPLC-HRMS serum analysis, was performed on 16 ICU patients, categorized as either discharged (n=8), or deceased (n=8) in average seven days post sample collection. Linear discriminant analysis (LDA) or principal component analysis (PCA)-LDA models involving different metabolite sets were developed, enabling to predict patients’ outcomes in the ICU with 92% accuracy and 83% sensitivity on validation datasets. These results highlight the advantages of UHPLC-HRMS as a platform capable of providing a set of clinically significant biomarkers to predict patients’ outcome.