Repository logo
 

Search Results

Now showing 1 - 3 of 3
  • Catalytic performance of Fe(II)-scorpionate complexes towards cyclohexane oxidation in organic, ionic liquid and/or supercritical CO2 media: a comparative study
    Publication . Da Costa Ribeiro, Ana Paula; Martins, Luisa; Alegria, Elisabete; Matias, Inês A. S.; Duarte, Tiago A. G.; Pombeiro, Armando
    The catalytic activity of the iron(II) C-scorpionate complexes [FeCl2{HC(pz)3}] 1 (pz = pyrazol-1-yl) and [FeCl2{HOCH2C(pz)3}] 2, and of their precursor FeCl2·2H2O 3, towards cyclohexane oxidation with tert-butyl hydroperoxide was evaluated and compared in different media: acetonitrile, ionic liquids (1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], and 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [bmim][FAP]), supercritical carbon dioxide (scCO2), and scCO2/[bmim][X] (X = PF6 or FAP) mixtures. The use of such alternative solvents led to efficient and selective protocols for the oxidation of cyclohexane. Moreover, tuning the alcohol/ketone selectivity was possible by choosing the suitable solvent.
  • Catalytic oxidation of cyclohexane with hydrogen peroxide and a tetracopper(II) complex in an ionic liquid
    Publication . Da Costa Ribeiro, Ana Paula; Martins, Luisa; HAZRA, SUSANTA; Pombeiro, Armando
    The catalytic peroxidative oxidation (with H2O2) of cyclohexane in an ionic liquid (IL) using the tetracopper(II) complex [(CuL)2(μ4-O,O′,O′′,O′′′-CDC)]2·2H2O [HL = 2-(2-pyridylmethyleneamino)benzenesulfonic acid, CDC = cyclohexane-1,4-dicarboxylate] as a catalyst is reported. Significant improvements on the catalytic performance, in terms of product yield (up to 36%), TON (up to 529), reaction time, selectivity towards cyclohexanone and easy recycling (negligible loss in activity after three consecutive runs), are observed using 1-butyl-3-methylimidazolium hexafluorophosphate as the chosen IL instead of a molecular organic solvent including the commonly used acetonitrile. The catalytic behaviors in the IL and in different molecular solvents are discussed.
  • Highly selective cyclohexane oxidation catalyzed by ferrocene in ionic liquid medium
    Publication . Martins, Luisa; Da Costa Ribeiro, Ana Paula; Pombeiro, Armando
    Background: Although economically very important in view of the significance of the oxidized products for the manufacture of adipic acid and caprolactam (precursors to polyamides widely used in several industries), the current cyclohexane oxidation industrial process leads to very low conversions (ca. 4%) to assure a reasonable selectivity (ca. 85%). Therefore, there is an urgent need to develop sustainable selective cyclohexane oxidation chemistry, which is the main objective of this work. Methods: The partial oxidation of cyclohexane by aqueous tert-butyl hydroperoxide (TBHP, 70% aq. sol.) in phosphonium ionic liquid medium [P6.6.6.14][DCA] and in the presence of catalytic amounts of ferrocene was investigated. The reaction proceeded during 2 h at room temperature. Results: It was found that TBHP, under the above conditions, oxidizeD cyclohexane with high selectivity (> 98%), yielding mainly cyclohexanone (up to 16%, based on the substrate) with total TOFs up to 1 x 104 h-1. Conclusion: The combination of a commercial iron-complex catalyst (ferrocene) and well-adjusted unconventional reaction conditions led to a highly selective, fast and reusable catalytic system for the mild oxidation of cyclohexane. Moreover, the found [Fe(C5H5)2]/[P6.6.6.14][DCA] catalytic system can be of significance to produce polyamide 6.