Repository logo
 

Search Results

Now showing 1 - 4 of 4
  • Using power electronics and automation to simulate solar PV systems
    Publication . Fonte, Pedro M.; Cordeiro, Armando; Barata, Filipe; Pires, V. Fernão; Chaves, Miguel; Foito, Daniel; Gamboa, Paulo
    This paper presents a solar photovoltaic panel simulator system with the ability to perform automatic tests in different condition according to manufacture parameters. This simulator is based on three buck--boost DC -DC converters controlled by a microcontroller and supported by a AXC 1050 Programmable Logic Controller from Phoenix Contact which is responsible for running the automatic tests. This solution allows to understand the typical operation of solar photovoltaic panels and MPPT algorithms considering suddenly changes in the irradiation, temperature, or load.
  • Combining power electronic converters and automation to simulate solar PV systems
    Publication . Cordeiro, Armando; Chaves, Miguel; Gamboa, Paulo; Barata, Filipe; Fonte, Pedro M; Lopes, Hélio; Fernao Pires, Vitor; Foito, Daniel; Amaral, Tito; Martins, Joao
    This paper presents a solar photovoltaic panel simulator system with the ability to perform automatic tests in different condition according to manufacture parameters. This simulator is based on three buck-boost DC-DC converters controlled by a microcontroller and supported by a Programmable Logic Controller which is responsible for the automatic tests. This solution will allow to achieve fast response, like suddenly changes in the irradiation, temperature, or load. To control the power converter, it will be used a fast and robust sliding mode controller. Therefore, with the proposed system is possible to perform the I-V curve simulation of a solar PV panel, evaluate different MPPT algorithms considering different meteorological and load variation. The main advantage of this work is the possibility to evaluate and test several MPPT algorithms and understand the operation and typical operation of solar PV panels in different conditions. Several simulations and experimental results from a laboratory prototype are presented to confirm the theoretical operation.
  • ESS design and management considering solar PV to fed off-grid EV charger
    Publication . Santos, Diogo; Fonte, Pedro M; Pereira, Rita; Barata, Filipe; Almeida, Paulo; Cordeiro, Armando; Luís, Ricardo; Fernao Pires, Vitor
    The increase of electric vehicles creates several challenges to the electric grid, mainly in those with weak power or off-grid. DC microgrids are becoming more and more important in the context of renewable energy sources, where solar PV systems are dominant. In this paper is proposed the design of a DC system to charge electric vehicles using PV generation and a battery storage system. A single DC-DC converter is used to operate the solar PV array with maximum power point tracking method and controls power flow from PV to storage battery and to the EV, operating as DC EV charger. The operation under various loading conditions is discussed. The performance of the proposed solution was simulated using MATLAB/Simulink software.
  • ESS design and management considering solar PV to fed off-grid EV charger
    Publication . Santos, Diogo; Fonte, Pedro M; Pereira, Rita Marcos Fontes Murta; Barata, Filipe; Almeida, Paulo; Cordeiro, Armando; Luís, Ricardo Jorge Ferreira; Fernao Pires, Vitor
    The increase of electric vehicles creates several challenges to the electric grid, mainly in those with weak power or off-grid. DC microgrids are becoming more and more important in the context of renewable energy sources, where solar PV systems are dominant. In this paper is proposed the design of a DC system to charge electric vehicles using PV generation and a battery storage system. A single DC-DC converter is used to operate the solar PV array with maximum power point tracking method and controls power flow from PV to storage battery and to the EV, operating as DC EV charger. The operation under various loading conditions is discussed. The performance of the proposed solution was simulated using MATLAB/Simulink software.