Repository logo
 

Search Results

Now showing 1 - 5 of 5
  • Evaluation of a phenomenological elastic‐plastic approach for magnesium alloys under multiaxial loading conditions
    Publication . Anes, Vitor; Reis, Luis; Freitas, M. De
    Magnesium alloys are greatly app reciated due to their high strength to weight ratio, stiffness, and low density; however, they can exhibit complex types of cyclic plasticity like twinning, de‐twinning, or Bauschinger effect. Recent studies indicate that these types of cyclic plastic deformations cannot be fully characterized using the typical tools used in cyclic characterization of steels and aluminium alloys; thus, it is required new approaches to fully capture their cyclic deformation and plasticity. This study aims to propose and evaluate a phenomenological cyclic elastic‐plastic approach designed to capture the cyclic deformation of magnesium alloys under multiaxial loading conditions. Series of experimental tests were performed to characterize the cyclic mechanical behaviour of the magnesium alloy AZ31BF considering proportional loadings with different strain amplitude ratios and a nonproportional loading with a 45° phase shift. The experi mental results were modulated using polynomial functions in order to implement a cyclic plasticity model for the AZ311BF based on the phenomenological approach proposed. Results show good correlations between experiments and estimates.
  • Fatigue life of a railway wheel under uniaxial and multiaxial loadings
    Publication . Soares, Henrique; Anes, Vitor; de Freitas, M.; Reis, Luis
    In this paper, a railway wheel material is under evaluation using multiaxial fatigue testing. The experiments were conducted using a servo-hydraulic machine with standardized specimens. All samples were machined from a single worn-out railway wheel. The damage scale between normal and shear stresses was evaluated in the normal stress space for proportional and non-promotional loadings. Moreover, the uniaxial SN curves were obtained. A critical plane analysis was performed using theoretical criteria and experimental results. Results show a strong influence of heat treatments on the material fatigue behavior.
  • Evaluation and numerical modeling of phenomenological approach for AZ31B-F magnesium alloy under multiaxial fatigue
    Publication . Moreira, R.; Anes, Vitor; Freitas, M. De; Reis, L.
    Magnesium alloys have been attractive to use in structural components due to their high strength to weight ratio, low density and high damping capacity. However, magnesium alloys show peculiar plastic deformation mechanisms under cyclic loads (twinning and de-twinning) that causes the asymmetric material behaviour and limits their use in structural components. Recent researches indicate that this type of plastic deformation mechanism cannot be fully characterized using the typical tools used in steels. Therefore, the phenomenological Hypo-strain (HYPS) model has been developed to capture the asymmetric behaviour of magnesium alloys under uniaxial and multiaxial loadings. This study aims to evaluate the phenomenological Hypo-strain approach for AZ31B-F magnesium alloy and to implement the HYPS model on an external subroutine (UMAT) to run on Abaqus. The goal is to reach a numerical tool that can be used to accurately describe the cyclic elastic-plastic behaviour of magnesium alloys in synergy with finite element packages. In order to characterize the cyclic behaviour of AZ31B-F magnesium alloy, experimental tests were performed considering proportional and non-proportional loadings. To evaluate the implemented model in UMAT, these results were correlated with the experiments and with the analytical HYPS approach. Moreover, the estimates were also correlated with the Armstrong-Frederick model available on Abaqus/Standard 6.14 library. The results have shown that the HYPS model was successful implemented on the UMAT subroutine with a good correlation between experimental tests and the HYPS model. Some remarks between the HYPS and Armstrong-Frederick models are drawn.
  • A new risk prioritization model for failure mode and effects analysis
    Publication . Anes, Vitor; Henriques, Elsa; de Freitas, M.; Reis, Luis
    Failure modes and effects analysis is a framework that has been widely used to improve reliability by prioritizing failures modes using the so‐called risk priority number. However, the risk priority number has some problems frequently pointed out in literature, namely its non‐injectivity, non‐surjectivity, and the impossibility to give weights to risk variables. Despite these disadvantages, the risk priority number continues to be widely used due to its higher simplicity when compared with other alternatives found in literature. In this paper, we propose a novel risk prioritization model to overcome the major drawbacks of the risk priority number. The model contains 2 functions, the risk isosurface function that prioritizes 3 risk variables considering their order of importance in a given risk scenario, and the risk prioritization index function which prioritizes 3 risk variables considering their weights. The novelty of the proposed model is its injectivity, surjectivity, and ease of use in failure modes prioritization. The performance of the proposed model was analyzed using some examples typically used to discuss the conventional risk priority number shortcomings. The model was applied to a case study and its performance correlated with other risk prioritization models. Results show that the failure modes prioritization reached with the proposed model agrees with the expectations made for the risk scenario.
  • Effect of shear/axial stress ratio on multiaxial non-proportional loading fatigue damage on AISI 303 steel
    Publication . Anes, Vitor; Reis, Luis; de Freitas, M.
    In this paper, we investigate the cyclic response of AISI 303 stainless steel subjected to non-proportional loads with different amplitude ratios between shear stresses and normal stresses. Based on the experiments, a relationship between the proportional reference load and a varied range of non-proportional loads was established. To achieve this objective, an experimental program was implemented to evaluate the non-proportional parameter Y. Then, the evolution of this parameter was analyzed with the number of cycles to failure and with the ratio between shear and normal stresses, finally, the evolution of the non-proportional parameter Y was mapped by two functions. The results show that the non-proportional response of the AISI 303 can be estimated using the two functions obtained. This allows the estimation of the relationship between non-proportional and proportional stresses as a function of the number of cycles to failure together with the relationship between shear and normal stresses. The results obtained have direct application in the evaluation of accumulated damage, assessed in real-time, resulting from variable amplitude loading spectra. This is of particular interest for the evaluation of structural health monitoring of structures and mechanical components.