Loading...
8 results
Search Results
Now showing 1 - 8 of 8
- Perceptually driven video error protection using a distributed source coding approachPublication . Seixas Dias, Andre; Brites, Catarina; Ascenso, Joao; Pereira, FernandoIn video communication systems, the video signals are typically compressed and sent to the decoder through an error-prone transmission channel that may corrupt the compressed signal, causing the degradation of the final decoded video quality. In this context, it is possible to enhance the error resilience of typical predictive video coding schemes using as inspiration principles and tools from an alternative video coding approach, the so-called Distributed Video Coding (DVC), based on the Distributed Source Coding (DSC) theory. Further improvements in the decoded video quality after error-prone transmission may also be obtained by considering the perceptual relevance of the video content, as distortions occurring in different regions of a picture have a different impact on the user's final experience. In this context, this paper proposes a Perceptually Driven Error Protection (PDEP) video coding solution that enhances the error resilience of a state-of-the-art H.264/AVC predictive video codec using DSC principles and perceptual considerations. To increase the H.264/AVC error resilience performance, the main technical novelties brought by the proposed video coding solution are: (i) design of an improved compressed domain perceptual classification mechanism; (ii) design of an improved transcoding tool for the DSC-based protection mechanism; and (iii) integration of a perceptual classification mechanism in an H.264/AVC compliant codec with a DSC-based error protection mechanism. The performance results obtained show that the proposed PDEP video codec provides a better performing alternative to traditional error protection video coding schemes, notably Forward Error Correction (FEC)-based schemes. (C) 2013 Elsevier B.V. All rights reserved.
- Correlation modeling for a distributed scalable video codec based on the HEVC standardPublication . Hoang Van, Xiem; Ascenso, Joao; Pereira, FernandoThe growing heterogeneity of networks, devices and consumption conditions asks for flexible and adaptive video coding solutions. The compression power of the HEVC standard and the benefits of the distributed video coding paradigm allow designing novel scalable coding solutions with improved error robustness and low encoding complexity while still achieving competitive compression efficiency. In this context, this paper proposes a novel scalable video coding scheme using a HEVC Intra compliant base layer and a distributed coding approach in the enhancement layers (EL). This design inherits the HEVC compression efficiency while providing low encoding complexity at the enhancement layers. The temporal correlation is exploited at the decoder to create the EL side information (SI) residue, an estimation of the original residue. The EL encoder sends only the data that cannot be inferred at the decoder, thus exploiting the correlation between the original and SI residues; however, this correlation must be characterized with an accurate correlation model to obtain coding efficiency improvements. Therefore, this paper proposes a correlation modeling solution to be used at both encoder and decoder, without requiring a feedback channel. Experiments results confirm that the proposed scalable coding scheme has lower encoding complexity and provides BD-Rate savings up to 3.43% in comparison with the HEVC Intra scalable extension under development. © 2014 IEEE.
- A flexible side information generation framework for distributed video codingPublication . Ascenso, Joao; Brites, Catarina; Pereira, FernandoOne of the most efficient approaches to generate the side information (SI) in distributed video codecs is through motion compensated frame interpolation where the current frame is estimated based on past and future reference frames. However, this approach leads to significant spatial and temporal variations in the correlation noise between the source at the encoder and the SI at the decoder. In such scenario, it would be useful to design an architecture where the SI can be more robustly generated at the block level, avoiding the creation of SI frame regions with lower correlation, largely responsible for some coding efficiency losses. In this paper, a flexible framework to generate SI at the block level in two modes is presented: while the first mode corresponds to a motion compensated interpolation (MCI) technique, the second mode corresponds to a motion compensated quality enhancement (MCQE) technique where a low quality Intra block sent by the encoder is used to generate the SI by doing motion estimation with the help of the reference frames. The novel MCQE mode can be overall advantageous from the rate-distortion point of view, even if some rate has to be invested in the low quality Intra coding blocks, for blocks where the MCI produces SI with lower correlation. The overall solution is evaluated in terms of RD performance with improvements up to 2 dB, especially for high motion video sequences and long Group of Pictures (GOP) sizes.
- A denoising approach for iterative side information creation in distributed video codingPublication . Ascenso, Joao; Brites, Catarina; Pereira, FernandoIn distributed video coding, motion estimation is typically performed at the decoder to generate the side information, increasing the decoder complexity while providing low complexity encoding in comparison with predictive video coding. Motion estimation can be performed once to create the side information or several times to refine the side information quality along the decoding process. In this paper, motion estimation is performed at the decoder side to generate multiple side information hypotheses which are adaptively and dynamically combined, whenever additional decoded information is available. The proposed iterative side information creation algorithm is inspired in video denoising filters and requires some statistics of the virtual channel between each side information hypothesis and the original data. With the proposed denoising algorithm for side information creation, a RD performance gain up to 1.2 dB is obtained for the same bitrate.
- H.264/AVC backward compatible Bit-Depth scalable video codingPublication . Nascimento, Vasco; Ascenso, Joao; Pereira, FernandoAs high dynamic range video is gaining popularity, video coding solutions able to efficiently provide both low and high dynamic range video, notably with a single bitstream, are increasingly important. While simulcasting can provide both dynamic range videos at the cost of some compression efficiency penalty, bit-depth scalable video coding can provide a better trade-off between compression efficiency, adaptation flexibility and computational complexity. Considering the widespread use of H.264/AVC video, this paper proposes a H.264/AVC backward compatible bit-depth scalable video coding solution offering a low dynamic range base layer and two high dynamic range enhancement layers with different qualities, at low complexity. Experimental results show that the proposed solution has an acceptable rate-distortion performance penalty regarding the HDR H.264/AVC single-layer coding solution.
- Augmented LDPC Graph for Distributed Video Coding with Multiple Side InformationPublication . Ascenso, Joao; Catarina Brites; Pereira, FernandoThe advances made in channel-capacity codes, such as turbo codes and low-density parity-check (LDPC) codes, have played a major role in the emerging distributed source coding paradigm. LDPC codes can be easily adapted to new source coding strategies due to their natural representation as bipartite graphs and the use of quasi-optimal decoding algorithms, such as belief propagation. This paper tackles a relevant scenario in distributedvideo coding: lossy source coding when multiple side information (SI) hypotheses are available at the decoder, each one correlated with the source according to different correlation noise channels. Thus, it is proposed to exploit multiple SI hypotheses through an efficient joint decoding technique withmultiple LDPC syndrome decoders that exchange information to obtain coding efficiency improvements. At the decoder side, the multiple SI hypotheses are created with motion compensated frame interpolation and fused together in a novel iterative LDPC based Slepian-Wolf decoding algorithm. With the creation of multiple SI hypotheses and the proposed decoding algorithm, bitrate savings up to 8.0% are obtained for similar decoded quality.
- Side information creation for efficient Wyner-Ziv video coding: Classifying and reviewingPublication . Brites, Catarina; Ascenso, Joao; Pereira, FernandoVideo coding technologies have played a major role in the explosion of large market digital video applications and services. In this context, the very popular MPEG-x and H-26x video coding standards adopted a predictive coding paradigm, where complex encoders exploit the data redundancy and irrelevancy to 'control' much simpler decoders. This codec paradigm fits well applications and services such as digital television and video storage where the decoder complexity is critical, but does not match well the requirements of emerging applications such as visual sensor networks where the encoder complexity is more critical. The Slepian Wolf and Wyner-Ziv theorems brought the possibility to develop the so-called Wyner-Ziv video codecs, following a different coding paradigm where it is the task of the decoder, and not anymore of the encoder, to (fully or partly) exploit the video redundancy. Theoretically, Wyner-Ziv video coding does not incur in any compression performance penalty regarding the more traditional predictive coding paradigm (at least for certain conditions). In the context of Wyner-Ziv video codecs, the so-called side information, which is a decoder estimate of the original frame to code, plays a critical role in the overall compression performance. For this reason, much research effort has been invested in the past decade to develop increasingly more efficient side information creation methods. This paper has the main objective to review and evaluate the available side information methods after proposing a classification taxonomy to guide this review, allowing to achieve more solid conclusions and better identify the next relevant research challenges. After classifying the side information creation methods into four classes, notably guess, try, hint and learn, the review of the most important techniques in each class and the evaluation of some of them leads to the important conclusion that the side information creation methods provide better rate-distortion (RD) performance depending on the amount of temporal correlation in each video sequence. It became also clear that the best available Wyner-Ziv video coding solutions are almost systematically based on the learn approach. The best solutions are already able to systematically outperform the H.264/AVC Intra, and also the H.264/AVC zero-motion standard solutions for specific types of content. (C) 2013 Elsevier B.V. All rights reserved.
- Low complexity intra mode selection for efficient distributed video codingPublication . Ascenso, Joao; Pereira, FernandoMotion compensated frame interpolation (MCFI) is one of the most efficient solutions to generate side information (SI) in the context of distributed video coding. However, it creates SI with rather significant motion compensated errors for some frame regions while rather small for some other regions depending on the video content. In this paper, a low complexity Infra mode selection algorithm is proposed to select the most 'critical' blocks in the WZ frame and help the decoder with some reliable data for those blocks. For each block, the novel coding mode selection algorithm estimates the encoding rate for the Intra based and WZ coding modes and determines the best coding mode while maintaining a low encoder complexity. The proposed solution is evaluated in terms of rate-distortion performance with improvements up to 1.2 dB regarding a WZ coding mode only solution.