Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Kinematics of a classical ballet base movement using a kinetic sensorPublication . Barbosa, Inês; Milho, João; Lourenço, Inês; Mota, Ana; Nascimento, Vanda Maria dos Santos; Carvalho, Alda; Carvalho, André; Portal, RicardoDance is an art form considered a language since it can sometimes reflect a population’s culture or even a celebration that accompanies humanity from its earliest times and which requires from performers a high physical and emotional dexterity. It is expected that the dancer performs rigorous and repetitive technical movements that often lead to painful injuries, resulting in 56% of classical ballet dancers will suffer from some type of musculoskeletal injury. Due to this high number of injuries, it is essential to study and analyse base movements for this type of dance in order to prevent injuries and to optimize the dancer's choreography and productivity. These movements are precedents of more complex movements. In this work, the study of a base dance movement, the Echappé Sauté, using biomechanical techniques is carried out to study the kinematics of the movement. For the data collection, three dancers voluntarily participated and the movements were capture using a 2nd Generation Kinect camera that allows the capture of 3D movement. The biomechanical analysis was performed using the IpiSoft software and a manual procedure was used to perform a 2D biomechanical analysis based on the assumption that the dance movements for this study occur only in one plane. The results were compared to show the adequacy of the use of the Kinetic sensor for 3D dance movement analysis. 7
- Multibody simulation of the musculoskeletal system of the human handPublication . Carvalho, André; Suleman, AfzalThis paper presents a numerical model of the forward multibody dynamics of the human hand. This model forms the basic foundation in the development of a five-fingered anthropomorphic hand prosthesis. The model is composed of two parts: a model for the rigid-body dynamics of the bone and joint structure of the human hand using the modified articulated-body algorithm for tree structures, and a model to represent the action the muscles tendons present in the hand. The resulting nonlinear model takes as input the actuation of each muscle and outputs the movements of the joints of the hand. This model will be used in the development of a nonlinear controller for the prosthesis and in its testing before being applied into the prosthesis prototype.