Loading...
6 results
Search Results
Now showing 1 - 6 of 6
- Substrate integrated waveguide cavity backed slot antennas for millimeter-wave applicationsPublication . Finich, Sanaâ; Salgado, Henrique; Pinho, PedroA low-cost single-layer substrate-integrated waveg uide (SIW) cavity-backed slot antenna is proposed for millimeter wave applications. The structure is designed to operate at the W-band. The T-shaped slot antenna is placed on the back-side of the SIW and fed by a grounded coplanar waveguide (GCPW) transmission line. A transition between the (GCPW) and the SIW is also designed. The simulated results provide that the antenna has a stable gain over the frequency range (98.79-100.56) GHz with a maximum value of around 6 dBi also high radiation efficiency.
- Meander-line monopole antenna with compact ground plane for a bluetooth system-in-packagePublication . Santos, Hugo M.; Pinho, Pedro; Silva, Rui Pedro; Pinheiro, Márcio; Salgado, HenriqueIn this letter, a packaged compact meander-line monopole antenna for Bluetooth communications, manufactured in low-density fan-out technology, is presented. A combined size for the antenna and ground plane of 0.1 lambda(0) x 0.06 lambda(0) x 0.008 lambda(0) is obtained. Such small antennas are usually designed considering their connection to an evaluation board with a large ground plane, which improves their gain and bandwidth, but in this letter, the antenna is designed so it can work standalone without any further connection to printed circuit boards. The challenge of designing such a compact antenna is surpassed by performing a detailed modeling of the radiating meander-line element altogether with its finite ground plane, a tuning inductor, and an inductive coupling feed. The antenna model is developed in Ansys HFSS using the finite element method, which is later validated experimentally. Measurements of the return loss radiation pattern are carried out, and final results show a -6 dB bandwidth of approximately 110 MHz and a gain of -8.7 dBi, at 2.42 GHz.
- Design of an anechoic chamber for W-Band and mmWavePublication . Pinho, Pedro; Santos, Hugo; Salgado, HenriqueIn this paper, we describe the design of an electrically large anechoic chamber for usage on millimetre-wave bands. Ansys Savant sotware was used to perform a simulation of the chamber, using physical optics coupled with uniform theory of diffraction (PO/UTD). Moreover, a method based on an open waveguide probe is described in this paper to obtain the electrical properties of the RF absorbers at millimetre-wave frequencies. Two different source antennas were simulated in this work and the corresponding quiet zones predicted. The largest quiet zone was 30 mm x 30 mm x 50mm, for a chamber size of 1.2 m x 0.6 m x 0.6 m.
- Dual-polarized patch antenna-in-package with high isolation for Ka-Band 5G communicationsPublication . Santos, Hugo Miguel; Pinho, Pedro; Salgado, HenriqueIn this paper we describe the design of a dual polarized packaged patch antenna for 5G communications with improved isolation and bandwidth for Ka-band. The results were validated using FEM and Momentum co-simulations in ADS. The novelty of the approach is the use of parasitic elements in the same layer to circumvent bandwidth limitations, thereby reducing the layer count in contrast to previous designs, combined with a differential feeding technique for improved isolation and radiation pattern stability, albeit at the expense of an increased complexity in the matching process. A peak gain of 5 dBi, isolation above 40 dB and a radiation efficiency of 60% were obtained.
- Patch antenna-in-package for 5G communications with dual polarization and high isolationPublication . Santos, Hugo; Pinho, Pedro; Salgado, HenriqueIn this paper, we describe the design of a dual polarized packaged patch antenna for 5G communications with improved isolation and bandwidth for K-band. We introduce a differential feeding technique and a heuristic-based design of a matching network applied to a single layer patch antenna with parasitic elements. This approach resulted in broader bandwidth, reduced layer count, improved isolation and radiation pattern stability. The results were validated through finite element method (FEM) and method of moments (MoM) simulations. A peak gain of 5 dBi, isolation above 40 dB and a radiation efficiency of 60% were obtained.
- Elliptical monopole antenna on InP substrate for sub-THz RTD-based oscillatorsPublication . Santos, H. M.; Pessoa, Luis; Salgado, Henrique; Pinho, PedroThe high permittivity of InP substrates has been a limiting factor for the bandwidth and efficiency of antennas fabricated in this material. In this manuscript we propose an elliptical monopole, monolithically fabricated in InP, fed by a CPW line. The suggested topology was simulated using HFSS finite element method. Input reflection coefficient measurements were performed on the monopole to validate the proposed antenna. Simulated and measured -10 dB bandwidths of 27 and 24 GHz were obtained, respectively. The peak simulated efficiency and realized gain were 95.37% and 4.6 dBi.