Repository logo
 

Search Results

Now showing 1 - 4 of 4
  • Fault-tolerant SRM dive with a diagnosis method based on the entropy feature approach
    Publication . Fernao Pires, Vitor; Amaral, Tito; Cordeiro, Armando; Foito, Daniel; Pires, Armando J.; Martins, Joao
    The power electronic converter design is essential for the operation of the switched reluctance motor (SRM). Thus, a fault-tolerant power converter is fundamental to ensure high reliability and extend the drive operation. To achieve fault tolerance, fault detection and diagnosis methods are critical in order to identify, as soon as possible, the failure mode of the drive. To provide such capability, it is proposed in this paper a new fault-tolerant power converter scheme combined with a fault detection method regarding the most common power semiconductors failures in SRM drives. The fast and reliable proposed diagnosis method is based on the entropy theory. Based on this theory, normalized indexes (diagnostic variables) are created, which are independent from the load and speed of the motor. Through this method, it is possible to identify the faulty leg, as well as the type of power semiconductor fault. To test and evaluate the proposed solution several laboratory experiments were carried out using a 2 kW four-phase 8 / 6 SRM.
  • A SRM for a PV powered water pumping system based on a multilevel converter and DC/DC dual output converter
    Publication . Foito, Daniel; Fernao Pires, Vitor; Cordeiro, Armando; Amaral, Tito; Chaves, Miguel; Pires, Armando; Martins, Joao
    This paper focuses on a proposal for a system based on a photovoltaic (PV) supply for a powered water pumping. The system consists in a switched reluctance machine (SRM) controlled by a multilevel converter and fed by PV panels associated to a DC/DC converter. The multilevel power converter proposed to control the SRM was designed to minimize the switches and to support the balance of the two input capacitors. The DC/DC converter consists in a hybrid solution that merges a Buck-Boost converter with a Sepic converter. They use a topology solution in which the input current presents a reduced ripple and only requires one switch. This DC/DC converter is also characterized by a dual output to adapt to the multilevel converter. The control system and a maximum power point tracking (MPPT) algorithm are also presented. The operation of this system will be verified by tests that are done by computer simulations.
  • Combining power electronic converters and automation to simulate solar PV systems
    Publication . Cordeiro, Armando; Chaves, Miguel; Gamboa, Paulo; Barata, Filipe; Fonte, Pedro M; Lopes, Hélio; Fernao Pires, Vitor; Foito, Daniel; Amaral, Tito; Martins, Joao
    This paper presents a solar photovoltaic panel simulator system with the ability to perform automatic tests in different condition according to manufacture parameters. This simulator is based on three buck-boost DC-DC converters controlled by a microcontroller and supported by a Programmable Logic Controller which is responsible for the automatic tests. This solution will allow to achieve fast response, like suddenly changes in the irradiation, temperature, or load. To control the power converter, it will be used a fast and robust sliding mode controller. Therefore, with the proposed system is possible to perform the I-V curve simulation of a solar PV panel, evaluate different MPPT algorithms considering different meteorological and load variation. The main advantage of this work is the possibility to evaluate and test several MPPT algorithms and understand the operation and typical operation of solar PV panels in different conditions. Several simulations and experimental results from a laboratory prototype are presented to confirm the theoretical operation.
  • Diagnosing Power Transistor Faults in Multilevel T-Type Based Nine Switch Inverter Using Center of Mass Indexes
    Publication . Monteiro, Joaquim; Amaral, Tito; Silva, J. Fernando; Pinto, Sonia; Fernao Pires, Vitor
    Nine-switch voltage source inverters (NSVSI) are DC-AC converters that utilize a reduced number of switches, making them advantageous for dual or six-phase motors. To enhance the quality of the output voltage and provide fault tolerant capability, NSVSI topologies, like the T-Type-based NSVSI, have been modified to operate as multilevel converters. However, to ensure fault-tolerant capability, a fault diagnosis algorithm for power transistors must be developed. Therefore, this paper proposes a novel fault detection and diagnosis algorithm to identify faulty transistors in a multilevel T-Type-based NSVSI. This method is based on the development of specific indices derived from the center of mass of the output currents. The proposed technique offers a fast and reliable solution, demonstrating robustness under various load conditions. The effectiveness of this method will be validated through a series of simulation tests.