Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 3 of 3
  • Design of single phase SiC bidirectional DC-AC converter with low-cost PLL for power factor correction
    Publication . Bento, Alexandre; André, Sérgio; Luís, Ricardo; Silva, J. Fernando
    The paper presents the design stages of a single-phase Silicon Carbide bidirectional DC-AC converter. This includes the LCL filter design responsible to meet grid connection requirements. A 3kW laboratory prototype of the power converter is built employing a low-cost phase locked loop and its results are presented. The design of the low-cost phase locked loop and its implementation are depicted in some detail.
  • Transformerless ultra-high gain buck-boost DC-DC converter with single-switch of reduced voltage stress
    Publication . Cordeiro, Armando; Gamboa, Paulo; Luís, Ricardo; Fonte, Pedro M; Monteiro, Joaquim; Martins, João F.; Silva, J. Fernando; Foito, Daniel; Fernao Pires, Vitor
    This paper introduces a new DC-DC power converter topology capable of both step-up and step-down voltage conversion, with an exceptionally high voltage gain ratio.. Besides the high extension of the voltage gain range, the converter is also characterized by the use of a single switch. Moreover, the stress imposed on the switch's voltage is minimized, enabling the utilization of low-voltage, low RDS-ON MOSFETs. Consequently, this modification leads to reduced costs and losses associated with switch conduction and turn ON. Another aspect concerning the proposed converter is that the input current exhibits a continuous behavior, which can be significant for various applications. The paper provides insights into the operational performance, steady state behavior, and mathematical underpinnings of the proposed dc-dc converter. Comparative evaluation of the static voltage gain of the proposed converter and other topologies with comparable characteristics will also be shown. Verification of the presented converter's key features are conducted through both simulation and experimental assessments using a 440-W laboratory prototype. Through these analyses, the efficacy and viability of the modified coupled-inductor SEPIC converter with enhanced voltage gain capability are confirmed.
  • A Novel Multilevel T-Type Indirect Matrix Converter for Three-phase Open-end AC Loads
    Publication . Bento, Alexandre; Luís, Ricardo; Pinto, Sonia; Silva, J. Fernando
    In this work a novel topology featuring an Indirect Matrix Converter (IMC) supplying a three-phase openend load is proposed to allow multiple levels of voltage while reducing common mode voltages (CMV) at load terminals. The topology features a T-Type three phase inverter connected to the grid neutral terminal, allowing phase to phase or phase to neutral voltages to be supplied to the load. A comparison with the already known IMC open-end load scheme, based on two voltage source inverters (VSI), is performed achieving promising results in terms of Common Mode Voltage reduction at the load terminals, while achieving current waveforms with lower distortion. The improvement of CMV waveforms is useful for motor drives, reducing drive bearing currents and increasing overall lifespan.