Repository logo
 

Search Results

Now showing 1 - 4 of 4
  • Fatigue life of a railway wheel under uniaxial and multiaxial loadings
    Publication . Soares, Henrique; Anes, Vitor; de Freitas, M.; Reis, Luis
    In this paper, a railway wheel material is under evaluation using multiaxial fatigue testing. The experiments were conducted using a servo-hydraulic machine with standardized specimens. All samples were machined from a single worn-out railway wheel. The damage scale between normal and shear stresses was evaluated in the normal stress space for proportional and non-promotional loadings. Moreover, the uniaxial SN curves were obtained. A critical plane analysis was performed using theoretical criteria and experimental results. Results show a strong influence of heat treatments on the material fatigue behavior.
  • A new risk prioritization model for failure mode and effects analysis
    Publication . Anes, Vitor; Henriques, Elsa; de Freitas, M.; Reis, Luis
    Failure modes and effects analysis is a framework that has been widely used to improve reliability by prioritizing failures modes using the so‐called risk priority number. However, the risk priority number has some problems frequently pointed out in literature, namely its non‐injectivity, non‐surjectivity, and the impossibility to give weights to risk variables. Despite these disadvantages, the risk priority number continues to be widely used due to its higher simplicity when compared with other alternatives found in literature. In this paper, we propose a novel risk prioritization model to overcome the major drawbacks of the risk priority number. The model contains 2 functions, the risk isosurface function that prioritizes 3 risk variables considering their order of importance in a given risk scenario, and the risk prioritization index function which prioritizes 3 risk variables considering their weights. The novelty of the proposed model is its injectivity, surjectivity, and ease of use in failure modes prioritization. The performance of the proposed model was analyzed using some examples typically used to discuss the conventional risk priority number shortcomings. The model was applied to a case study and its performance correlated with other risk prioritization models. Results show that the failure modes prioritization reached with the proposed model agrees with the expectations made for the risk scenario.
  • Effect of shear/axial stress ratio on multiaxial non-proportional loading fatigue damage on AISI 303 steel
    Publication . Anes, Vitor; Reis, Luis; de Freitas, M.
    In this paper, we investigate the cyclic response of AISI 303 stainless steel subjected to non-proportional loads with different amplitude ratios between shear stresses and normal stresses. Based on the experiments, a relationship between the proportional reference load and a varied range of non-proportional loads was established. To achieve this objective, an experimental program was implemented to evaluate the non-proportional parameter Y. Then, the evolution of this parameter was analyzed with the number of cycles to failure and with the ratio between shear and normal stresses, finally, the evolution of the non-proportional parameter Y was mapped by two functions. The results show that the non-proportional response of the AISI 303 can be estimated using the two functions obtained. This allows the estimation of the relationship between non-proportional and proportional stresses as a function of the number of cycles to failure together with the relationship between shear and normal stresses. The results obtained have direct application in the evaluation of accumulated damage, assessed in real-time, resulting from variable amplitude loading spectra. This is of particular interest for the evaluation of structural health monitoring of structures and mechanical components.
  • The damage scale concept and the critical plane approach
    Publication . Anes, Vitor; de Freitas, M.; Reis, L.
    Critical plane criteria seek the plane in which their damage parameter has its maximum value. On this plane, the fatigue damage of both normal and shear stresses is updated to the same damage scale by a constant, typically based on material normal/shear fatigue limits. This paper focuses on the damage scale concept under a stress-based critical plane standpoint, and the main objective is to evaluate its performance. To perform this study, data from the high strength steel 42CrMo4 were considered. Five proportional loading paths with different stress amplitude ratios and stress levels were analysed using 2 different multiaxial fatigue criteria, namely, the Findley critical plane model and the stress scale factor equivalent shear stress. Results show that the damage scale between normal and shear stress components varies accordingly to the loading plane direction considered.