Repository logo
 

Search Results

Now showing 1 - 5 of 5
  • Criticality of colloids with three distinct interaction patches: As simple as A, B, C?
    Publication . Tavares, Jose; Teixeira, Paulo
    We systematically study the phase behavior of a simple model of associating fluids which consists of hard spherical particles with three short-ranged attractive sites on their surfaces (sticky spots or patches), of types A, B, and C, that can form bonds with energy ij (i,j = A,B,C). We consider realizations of the model with one, two, or three nonzero ij. Using Wertheim’s first order perturbation theory of association, we establish the minimum requirements on the bond energies for the model to exhibit a liquid-vapor critical point, and investigate the nature of criticality in each case. As a preliminary, we rigorously show that, within this theory, particles with M identical sites do not condense if M < 3, a result that was previously conjectured, but never proved.
  • Hierarchical wrinkling on elastometric Janus spheres
    Publication . Trindade, Ana C.; Canejo, João; Patricio, Pedro; Brogueira, Pedro; Teixeira, Paulo; Godinho, Maria Helena
    Hierarchical wrinkling on elastomeric Janus spheres is permanently imprinted by swelling, for different lengths of time, followed by drying the particles in an appropriate solvent. First-order buckling with a spatial periodicity (lambda(11)) of the order of a few microns and hierarchical structures comprising of 2nd order buckling with a spatial periodicity (lambda(12)) of the order of hundreds of nanometers have been obtained. The 2nd order buckling features result from a Grinfeld surface instability due to the diffusion of the solvent and the presence of sol molecules.
  • Emergence of biaxial nematic phases in solutions of semiflexible dimers
    Publication . Vaghela, Arvin; Teixeira, Paulo; Terentjev, Eugene M.
    We investigate the isotropic, uniaxial nematic and biaxial nematic phases, and the transitions between them, for a model lyotropic mixture of flexible molecules consisting of two rigid rods connected by a spacer with variable bending stiffness. We apply density-functional theory within the Onsager approximation to describe strictly excluded-volume interactions in this athermal model and to self-consistently find the orientational order parameters dictated by its complex symmetry, as functions of the density. Earlier work on lyotropic ordering of rigid bent-rod molecules is reproduced and extended to show explicitly the continuous phase transition at the Landau point, at a critical bend angle of 36.. For flexible dimers with no intrinsic biaxiality, we find that a biaxial nematic phase can nevertheless form at a sufficiently high density and low bending stiffness. For bending stiffness kappa > 0.86k(B)T, this biaxial phase manifests as dimer bending fluctuations occurring preferentially in one plane. When the dimers are more flexible, kappa < 0.86k(B)T, the modal shape of the fluctuating dimer is a V with an acute opening angle, and one of the biaxial order parameters changes sign, indicating a rotation of the directors. These two regions are separated by a narrow strip of uniaxial nematic in the phase diagram, which we generate in terms of the spacer stiffness and particle density.
  • Neural-network approach to modeling liquid crystals in complex confinement
    Publication . Santos-Silva, T.; Teixeira, Paulo; Anquetil-Deck, C.; Cleaver, D. J.
    Finding the structure of a confined liquid crystal is a difficult task since both the density and order parameter profiles are nonuniform. Starting from a microscopic model and density-functional theory, one has to either (i) solve a nonlinear, integral Euler-Lagrange equation, or (ii) perform a direct multidimensional free energy minimization. The traditional implementations of both approaches are computationally expensive and plagued with convergence problems. Here, as an alternative, we introduce an unsupervised variant of the multilayer perceptron (MLP) artificial neural network for minimizing the free energy of a fluid of hard nonspherical particles confined between planar substrates of variable penetrability. We then test our algorithm by comparing its results for the structure (density-orientation profiles) and equilibrium free energy with those obtained by standard iterative solution of the Euler-Lagrange equations and with Monte Carlo simulation results. Very good agreement is found and the MLP method proves competitively fast, flexible, and refinable. Furthermore, it can be readily generalized to the richer experimental patterned-substrate geometries that are now experimentally realizable but very problematic to conventional theoretical treatments.
  • Reentrant Phase Diagram of Network Fluids
    Publication . Russo, J.; Tavares, Jose; Teixeira, Paulo; Gama, Margarida; SCIORTINO, Francesco
    We introduce a microscopic model for particles with dissimilar patches which displays an unconventional "pinched'' phase diagram, similar to the one predicted by Tlusty and Safran in the context of dipolar fluids [Science 290, 1328 (2000)]. The model-based on two types of patch interactions, which account, respectively, for chaining and branching of the self-assembled networks-is studied both numerically via Monte Carlo simulations and theoretically via first-order perturbation theory. The dense phase is rich in junctions, while the less-dense phase is rich in chain ends. The model provides a reference system for a deep understanding of the competition between condensation and self-assembly into equilibrium-polymer chains.