Repository logo
 

Search Results

Now showing 1 - 5 of 5
  • Explosive welding of aluminium to stainless steel using carbon steel and niobium interlayers
    Publication . Carvalho, Gustavo; Galvão, Ivan; Mendes, R.; Leal, R. M.; Loureiro, Altino
    This work aimed to study aluminium to stainless steel explosive welds produced using two different interlayers: carbon steel and niobium. The use of each interlayer was analysed and compared microstructurally and mechanically using many characterisation techniques. The final joints using both interlayers presented favourable interfacial microstructure: waves on both interfaces. However, the joint using the carbon steel interlayer showed the best mechanical properties compared to the joints using the niobium interlayer. All interfaces found on both welds were wavy. However, depending on the metallic alloy combination, the shape of the wave is completely different. The results suggest that the shape of the waves is influenced by the shock impedance mismatch of the materials being welded. The impedance mismatch parameter (IMP) developed for explosive welding in this work proved to be a compelling method to order metallic combinations in a single axis to estimate the tendency to form typical or curled waves. Typical symmetrical waves tend to develop less quantity of IMCs than curled waves. However, the mechanical tests performed did not detect differences that could have been caused by this difference.
  • Friction stir welding and explosive welding of aluminum/copper: process analysis
    Publication . Carvalho, G. H. S. F. L.; Galvão, Ivan; Mendes, R.; Leal, Rui; Loureiro, Altino
    The 6082 aluminum alloy was welded to copper-DHP by friction stir welding and explosive welding. The effect of each welding process on the microstructural evolution, the intermetallic phases distribution, and the mechanical behavior of both types of welds was analyzed and compared. The microstructural changes proved to be much more expressive in friction stir welding due to the larger area under plastic deformation, the stirring and mixing of the alloys, the longer time under high temperature, and the longer interaction times between the base materials during welding. As explosive welding process is much faster, it avoids extensive microstructural changes and significant interaction of the materials, reducing the intermetallic volumes and their distribution along the interface. The friction stir welds presented Cu-rich intermetallics while the explosive welds presented Al-rich intermetallics. For alloys that can easily form brittle intermetallic phases, excessive interaction during the welding process leads to a very poor mechanical behavior of the joints.
  • Influence of base material properties on copper and aluminium-copper explosive welds
    Publication . Carvalho, Gustavo; Galvão, Ivan; Mendes, R.; Leal, Rui; Loureiro, Altino
    The influence of base material properties on the interfacial phenomena in copper and aluminium-copper explosive welds was studied. Two explosive mixtures with different detonation velocities were tested. Sound aluminium-copper joints with effective bonding were achieved by using an explosive mixture with a lower detonation velocity. High energy explosives led to extensive interfacial melting, preventing the production of consistent dissimilar welds. Unlike to the similar copper joints, the aluminium-copper welds presented very asymmetrical interfacial waves, rich in intermetallic phases and displaying a curled morphology. The interaction of the materials in dissimilar welding was found to be completely different depending on the positioning of each alloy in the joint, i.e. positioned as the flyer or as the baseplate.
  • Weldability of aluminium-copper in explosive welding
    Publication . Carvalho, G. H. S. F. L.; Galvão, Ivan; Mendes, R.; Leal, Rui; Loureiro, Altino
    A large number of aluminium-copper explosive welds were produced under different welding conditions to perform a broad analysis of the weldability of this combination. The influence of the explosive mixture and the relative positioning of the plates on the welding results were analysed. When the aluminium alloy is positioned as the flyer plate, continuous interfacial melting occurred under the low values of energy lost by the collision, and collision point velocity. This proved that the weldability of the aluminium-copper combination is higher when the copper is positioned as the flyer. A mismatch between the experimental results and the existing theories that define the requirements for achieving consistent welds was noticed. Especially for welds produced using the aluminium alloy as the flyer, the experiments proved to be more restrictive than the theories. These theories, despite being widely applied in dissimilar welding literature, present several limitations concerning aluminium-copper welding. New approaches considering the formation of intermetallic phases at the interface, the properties of both welded metals, and/or the difference in their properties should be developed.
  • Effect of the flyer material on the interface phenomena in aluminium and copper explosive welds
    Publication . Carvalho, Gustavo; Mendes, R.; Leal, Rui; Galvão, Ivan; Loureiro, Altino
    The effect of physical and mechanical properties of three different flyers on the interface phenomena of partially overlapped explosive welds, using the same base plate material, was studied. Flyers of Copper Cu-DHP and aluminium alloy 6082 (tempers T6 and O) were welded to AA6082-T6 base plates. The morphology of the weld interface is strongly influenced by the physical and mechanical properties of the flyer. In the interface of the aluminium welds, the use of a flyer of lower hardness and yield strength than the base plate results in asymmetrical waves, with bigger amplitude and smaller wavelength than the weld series of similar temper, and higher mechanical properties. The copper-aluminium welds presented flat interfaces, mainly because of the significant differences in melting temperature and density between the copper flyer and the aluminium base plate. Considering these results and analysing several dissimilar welds carried out by other authors it was found that when the product of density and melting temperature ratios between the flyer and the base plate exceeds a certain value, there is no formation of waves at the interface of the metals. Furthermore, for the Cu-Al welds, the CuAl2 (theta) intermetallic phase was formed on the bond zone.