ISEL - Eng. Quim. Biol. - Capítulos ou partes de livros
Permanent URI for this collection
Browse
Recent Submissions
- Bacterial laccases: some recent advances and applicationsPublication . Martins, Lígia O.; Melo, Eduardo P.; Sanchez-Amat, Antonio; Robalo, Maria PaulaLaccases belong to the large family of multi-copper oxidases (MCOs) that couple the one-electron oxidation of substrates with the four-electron reduction of molecular oxygen to water. Because of their high relative non-specific oxidation capacity particularly on phenols and aromatic amines as well as the lack of requirement for expensive organic cofactors, they have found application in a large number of biotechnological fields. The vast majority of studies and applications were performed using fungal laccases, but bacterial laccases show interesting properties such as optimal temperature above 50 °C, optimal pH at the neutral to alkaline range, thermal and chemical stability and increased salt tolerance. Additionally, bacterial systems benefit from a wide range of molecular biology tools that facilitates their engineering and achievement of high yields of protein production and set-up of cost-effective bioprocesses. In this review we will provide up-to-date information on the distribution and putative physiological role of bacterial laccases and highlight their distinctive structural and biochemical properties, discuss the key role of copper in the biochemical properties, discuss thermostability determinants and, finally, review biotechnological applications with a focus on catalytic mechanisms on phenolics and aromatic amines.
- Clean forest – project concept and preliminary resultsPublication . Gomes, João; Puna, Jaime; Marques, António; Gominho, Jorge; Lourenço, Ana; Santos, Rui Galhano dos; Ozkan, SilaThe Clean Forest project aims to valorize forest biomass wastes (and then prevent their occurrence as a fuel source in forests), converting it to bioenergy, such as the production of 2nd generation synthetic biofuels, like bio-methanol, bio-DME, and biogas, depending on the process operating conditions. Valorization of potential forest waste biomass thus enhances the reduction of the probability of occurrence of forest fires and, therefore, presents a major value for local rural communities. The proposed process is easy to implement, and energetically, it shows significantly reduced costs than the conventional process of gasification. Additionally, the input of energy necessary to promote electrolysis can be achieved with solar energy, using photovoltaic panels. This paper refers to the actual progress of the project, as well as the further steps which consist of a set of measures aimed at the minimization of the occurrence of forest fires by the valorization of forest wastes into energy sources.
- Characterization of airborne emission of nanoparticles in the ceramic industry in PortugalPublication . Esteves, Hélder; Bordado, J.; Gomes, João; Miranda, R.; Albuquerque, PaulaThe objective of this study was to evaluate occupational exposure to nanoparticles during some tasks performed in different production processes of different ceramic industries in Portugal, to select the places of greatest occupational exposure through the analysis of the sampled data, to verify what is the pulmonary accumulation in these places, to identify the composition of the released nanoparticles, apply a Control Banding Tool and try to understand which companies require more risk control measures. The study was carried out in three different national ceramics production industries, one for sanitary ceramics production, another for porcelain crockery production and finally another for the production of ornamental crockery (red paste). It is concluded that occupational exposure values to nanoparticles are high in all cases and that nanoparticles are very small in size (11.5 to 15.4 nm). Existing risk control measures are insufficient and verified risk levels are high (Risk Level 3 and 4). The chemical composition of the analyzed nanoparticles is similar regardless of the typology of the ceramic production plant and their chemical composition as a percentage of certain materials has a direct influence on crystallinity.