Browsing by Author "Paulino, N."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Controlo por fase única de conversores A/D de baixa tensãoPublication . Galhardo, Acácio; Goes, J.; Vaz, B.; Paulino, N.Este trabalho apresenta a aplicação de um controlo de fase única a um conversor concorrencial de baixa tensão. Com vista à validação da análise e conclusão teóricas, um conversor concorrencial de 10-bit 4 MS/s foi projectado e simulado. Foi primeiramente simulado com um controlo clássico de 6 fases, e posteriormente com um esquema de fase única. Os resultados de simulação mostram que as características globais são mantidas, apontando para que o uso de esquemas de fase única em conversores de baixa tensão seja uma solução que reduz a complexidade dos sistemas clássicos não sobrepostos.
- Design of improved rail-to-rail low-distortion and low-stress switches in advanced CMOS technologiesPublication . Galhardo, Acácio João; Goes, J.; Paulino, N.This paper describes the efficient design of an improved and dedicated switched-capacitor (SC) circuit capable of linearizing CMOS switches to allow SC circuits to reach low distortion levels. The described circuit (SC linearization control circuit, SLC) has the advantage over conventional clock-bootstrapping circuits of exhibiting low-stress, since large gate voltages are avoided. This paper presents exhaustive corner simulation results of a SC sample-and-hold (S/H) circuit which employs the proposed and optimized circuits, together with the experimental evaluation of a complete 10-bit ADC utilizing the referred S/H circuit. These results show that the SLC circuits can reduce distortion and increase dynamic linearity above 12 bits for wide input signal bandwidths.
- Start-up circuit for low-power indoor light energy harvesting applicationsPublication . Carvalho, C.; Paulino, N.A start-up circuit, used in a micro-power indoor light energy harvesting system, is described. This start-up circuit achieves two goals: first, to produce a reset signal, power-on-reset (POR), for the energy harvesting system, and secondly, to temporarily shunt the output of the photovoltaic (PV) cells, to the output node of the system, which is connected to a capacitor. This capacitor is charged to a suitable value, so that a voltage step-up converter starts operating, thus increasing the output voltage to a larger value than the one provided by the PV cells. A prototype of the circuit was manufactured in a 130 nm CMOS technology, occupying an area of only 0.019 mm(2). Experimental results demonstrate the correct operation of the circuit, being able to correctly start-up the system, even when having an input as low as 390 mV using, in this case, an estimated energy of only 5.3 pJ to produce the start-up.