Browsing by Author "Montemor, M.F."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Direct electrodeposition of hydrogenated reduced graphene oxide from unsonicated solution and its electrochemical responsePublication . Noce, R.D.; Eugenio, S.; Siwek, K. I.; Moura E Silva, Teresa; Carmezim, Maria; Sakita, A. M. P.; Lavall, R.L.; Montemor, M.F.Reduced graphene oxide (rGO) is successfully electrodeposited from a graphene oxide-containing suspension under stirring and no sonication onto Ni foam by applying -1.5 V/SCE. The electrodeposited material is characterized by X-Ray Diffraction (XRD), Scanning electron microscopy (SEM), Raman spectroscopy, Fourier Transform Infra-Red spectroscopy (FTIR) and Thermogravimetric analysis (TGA). FTIR and TGA results indicate the formation of hydrogenated rGO after electrodeposition. In addition, the electrochemical response of the rGO/Ni electrode is evaluated by cyclic voltammetry in 1 M potassium hydroxide solution. The results reveal that the electrode possesses higher conductivity and lower polarization loss compared to bare Ni foam, opening wider perspectives to design composites with improved electrochemical performance.
- Electrodeposited reduced-graphene oxide/cobalt oxide electrodes for charge storage applicationsPublication . García-Gómez, A.; Eugénio, S.; Duarte, R.G.; Silva, Maria Teresa Oliveira de Moura e; Carmezim, M.J.; Montemor, M.F.In the present work, electrochemically reduced-graphene oxide/cobalt oxide composites for charge storage electrodes were prepared by a one-step pulsed electrodeposition route on stainless steel current collectors and after that submitted to a thermal treatment at 200 degrees C. A detailed physico-chemical characterization was performed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical response of the composite electrodes was studied by cyclic voltammetry and charge-discharge curves and related to the morphological and phase composition changes induced by the thermal treatment. The results revealed that the composites were promising materials for charge storage electrodes for application in redox supercapacitors, attaining specific capacitances around 430 F g(-1) at 1 A g(-1) and presenting long-term cycling stability. (C) 2016 Elsevier B.V. All rights reserved.
- Green synthesis of zinc oxide particles with apple-derived compounds and their application as catalysts in the transesterification of methyl benzoatesPublication . Soliman, Mohamed Mostafa Aboelhassan; Alegria, Elisabete; Da Costa Ribeiro, Ana Paula; Alves, Marta M; Saraiva, Marta S.; Montemor, M.F.; Pombeiro, ArmandoZnO nanoparticles (ZnONPs) were successfully synthesized using bravo-de-esmolfe apple extract in aqueous medium at room temperature. ZnO microparticles, prepared with a pure apple phytochemical, quercetin (ZnOq), or without phytochemicals (ZnO) were studied for comparative purposes. The re-use of apple waste for highly efficient catalyst production, based on green synthetic routes, can be added to the concept of a circular economy. The synthesized ZnO particles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N-2 adsorption/desorption Brunauer- Emmett-Teller (BET) theory. The XRD patterns indicated the formation of a hexagonal wurtzite phase with high purity and SEM and TEM analyses revealed the morphology of the particles. The apple extract produced spherical ZnONPs composed of round lamina-like structures, similar to the micro sized lamina-like shape of ZnOq and dissimilar to the flower-like shape of ZnO. The green synthesized ZnO nanoparticles (ZnONPs) led to a high product yield of ca. 96% within 24 h of reaction time in the transesterification reaction of different carboxylic esters.
- In-situ localized pH, pNa and dissolved O2 measurements during charge-discharge of mixed Ni–Co hydroxide electrodesPublication . Adán-Más, Alberto; Taryba, Maryna; Moura E Silva, Teresa; Guerlou-Demourgues, Liliane; Montemor, M.F.This work reports, for the first time, the use of ion-selective localized electrochemical techniques to elucidate the charge-discharge mechanism of nickel-cobalt hydroxide electrodes for electrochemical energy storage. The charge-discharge mechanism of electrodeposited nickel-cobalt hydroxide electrodes was studied in Na2SO4 0.05 M by localized in situ measurements of pH, pNa and dissolved O2 during cyclic voltammetry. Local pH and pNa distributions were recorded using micro-potentiometric sensors with liquid membrane, while dissolved O2 was monitored using a fiber-optic microsensor. These original results highlight how localized potentiometry can provide new insights to better understand the charge mechanism of metal (hydr)oxide electrodes by directly measuring the concentrations/activities of relevant species at the electrode-electrolyte interface during charge-discharge.
- On the growth and mechanical properties of nanostructured cobalt foams by dynamic hydrogen bubble template electrodepositionPublication . Arévalo-Cid, Pablo; Adan-Mas, Alberto; Moura E Silva, Teresa; Rodrigues, José Alberto; Maçôas, Ermelinda Maria Sengo; Vaz; Montemor, M.F.The growth mechanism of nanostructured cobalt foams prepared by hydrogen bubble template electrodeposition has been studied. To that end, cobalt foams have been synthesized under different electrodeposition times and studied with various characterization techniques, namely scanning electron microscopy (SEM) and confocal microscopy in reflection mode. In addition, the mechanical properties of the resulting foams have been tested by bending and tensile tests. To study the influence of chemical additives in the growth mechanism and final properties of the foams, agar-agar has been added to the electrolytic bath during foam preparation. Results evidence that the addition of agar has successfully modified the microstructure of the final foams, creating a denser porous structure with smaller pore area and reduced growth rate that translates into better mechanical properties. By studying the evolution of the microstructure under different deposition conditions, a growth model of cobalt metallic foams by dynamic hydrogen bubble template is proposed. This easy and scalable route paves the way to produce tailored foams for numerous applications that include, for instance, energy storage and energy conversion.
- Tailored 3D foams decorated with nanostructured manganese oxide for asymmetric electrochemical capacitorsPublication . Siwek, K. I.; Eugenio, S.; Aldama, I.; Rojo, J. M.; Amarilla, J. M.; Da Costa Ribeiro, Ana Paula; Moura E Silva, Teresa; Montemor, M.F.Tailored 3D (Ni and NiCo) metallic foam architectures were produced by electrodeposition and decorated via electrochemical routes with manganese oxide (MnOx) to serve as positive electrodes for supercapacitors. For comparative purposes, an electrode made of commercial Ni foam was also prepared. The foam-based electrodes were paired with a carbon cloth electrode and used to assemble asymmetric electrochemical cells. The electrochemical response of these cells was studied by applying different electrochemical techniques. In addition, two different protocols (cycling and floating) were applied to assess cells durability and fade. Despite the significant differences in the decorated foams morphology and structure their electrochemical responses revealed similar trends. The electrodes made of tailored foams showed higher specific capacitance, better capacitance retention at high current load and enhanced cycling stability compared to the electrodes made of commercial foam. The asymmetric cells made with the tailored foams revealed higher (maximum) specific energy (11-14 Wh kg(-1)) and specific power (1.3-1.4 x 10(4 )W kg(-1)) compared to cells assembled with commercial foams (8.4 Wh kg(-1) and 6.3 x 10(3) W kg(-1)). The durability tests evidenced that corrosion of the NiCo electrodeposited foams and electrochemical dissolution of MnOx are possible causes of cells degradation.