Browsing by Author "Karmali, Amin"
Now showing 1 - 10 of 32
Results Per Page
Sort Options
- Adsorption of myoglobin on calixarenes and biocatalysis in organic mediaPublication . Semedo, Magda C.; Karmali, Amin; Barata, Patrícia; Prata, José V.Derivatives of p-tert-butylcalix[4,6,8]arene carboxylic acids were used for selective adsorption of myoglobin.Amixtureofmyoglobin,laccaseandperoxidase wasusedforextractionwithcalixarenesandonlymyoglobin was selectively extracted to organic media. Myoglobin and Mb c–calixarene exhibited pseudoactivity of peroxidase in aqueous and organic media. This protein-calixarene complex exhibited the highest specific activity of 1.37 × 10−1 U.mg protein−1 at initial pH 6.5 of myoglobin aqueous solution. Apparent kinetic parameters (V max, K m, k cat and k cat/K m) for the pseudoperoxidase activity were determined in organic media for different initial pH values of myoglobin aqueous solution by Michaelis-Menten plot. The stability of this complex was studied for different initial pH values and t1/2 values were obtained in the range of 3.5–5.2 days. The extracted Mb c in organic media was recovered into fresh aqueous solutions at alkaline pH with a recovery of pseudoperoxidase activity of over 100%.
- Bioconversion of D-glucose into D-glucosone by Glucose 2-oxidase from Coriolus versicolor at Moderate PressuresPublication . Karmali, Amin; Coelho, JoseGlucose 2-oxidase (pyranose oxidase, pyranose: oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of D-glucose at carbon 2 in the presence of molecular O(2) producing D-glucosone (2-keto-glucose and D-arabino-2-hexosulose) and H(2)O(2). It was used to convert D-glucose into D-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of D-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H(2)O(2) acted as inhibitor for this reaction. The rate of bioconversion of D-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO(2) at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55 degrees C) and pH (5.0) of D-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E(a)) was 32.08 kJmol(-1) and kinetic parameters (V(max), K(m), K(cat) and K(cat)/K(m)) for this bioconversion were 8.8 Umg(-1) protein, 2.95 mM, 30.81 s(-1) and 10,444.06 s(-1)M(-1), respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of D-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.
- Bioconversion of D-glucose into D-glucosone by immobilized glucose 2-oxidase from Coriolus versicolorat moderate pressuresPublication . Karmali, Amin; Coelho, JoseThe immobilized glucose 2-oxidase (pyranose oxidase, pyranose:oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor was used to convert D-glucose into D-glucosone at moderate pressures, up to 150 bar, with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, different forms of immobilized biocatalysts, glucose concentration, pH, temperature and the presence of catalase. Glucose 2-oxidase (GOX2) was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. Purified enzyme and catalase were immobilized into a polyethersulfone (PES) membrane in the presence of glutaraldehyde and gelatin. Enhancement of the bioconversion of D-glucose was done by the pressure since an increase in the pressure with compressed air increases the conversion rates. The optimum temperature and pH for bioconversion of D-glucose were found to be 62 degrees C and pH 6.0, respectively and the activation energy (E(a)) was 28.01 kJ mol(-1). The apparent kinetic constants (V(max)' K(m)', K(cat)' and K(cat)/K(m)') for this bioconversion were 2.27 U mg(-1) protein, 11.15 mM, 8.33 s(-1) and 747.38 s(-1) M(-1), respectively. The immobilized biomass of C. versicolor as well as crude extract containing GOX2 activity were also useful for bioconversion of D-glucose at 65 bar with a yield of 69.9 +/- 3.8% and 91.3 +/- 1.2%, respectively. The immobilized enzyme was apparently stable for several months without any significant loss of enzyme activity. On the other hand, this immobilized enzyme was also stable at moderate pressures, since such pressures did not affect significantly the enzyme activity. (C) 2010 Elsevier Ltd. All rights reserved.
- Chromatographic behaviour of monoclonal antibodies against wild-type amidase from Pseudomonasaeruginosa on immobilized metal chelatesPublication . Martins, Sónia; Karmali, Amin; Serralheiro, Maria LuísaThe aim of this work was to devise a one-step purification procedure for monoclonal antibodies (MAbs) of IgG class by immobilized metal affinity chromatography (IMAC). Therefore, several stationary phases were prepared containing immobilized metal chelates in order to study the chromatographic behaviour of MAbs against wild-type amidase from Pseudomonas aeruginosa. Such MAbs adsorbed to Cu(II), Ni(II), Zn(II) and Co(II)-IDA agarose columns. The increase in ligand concentration and the use of longer spacer arms and higher pH values resulted in higher adsorption of MAbs into immobilized metal chelates. The dynamic binding capacity and the maximum binding capacity were 1.33 +/- 0.015 and 3.214 +/- 0.021 mg IgG/mL of sedimented commercial matrix, respectively. A K(D) of 4.53 x 10(-7) M was obtained from batch isotherm measurements. The combination of tailor-made stationary phases of IMAC and the correct selection of adsorption conditions permitted a one-step purification procedure to be devised for MAbs of IgG class. Culture supernatants containing MAbs were purified by IMAC on commercial-Zn(II) and EPI-30-IDA-Zn(II) Sepharose 6B columns and by affinity chromatography on Protein A-Sepharose CL-4B. This MAb preparation revealed on SDS-PAGE two protein bands with M(r) of 50 and 22 kDa corresponding to the heavy and light chains, respectively. Copyright (C) 2011 John Wiley & Sons, Ltd.
- Detection of FRET signals with a wavelength sensitive device based on a-SiC:HPublication . Louro, Paula; Vieira, Manuela; Costa, João; Vaz da Silva, V; Patriarca, João; Karmali, AminGlucose sensing is an issue with great interest in medical and biological applications. One possible approach to glucose detection takes advantage of measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor within a protein which undergoes glucose-induced changes in conformation. This demands the detection of fluorescent signals in the visible spectrum. In this paper we analyzed the emission spectrum obtained from fluorescent labels attached to a protein which changes its conformation in the presence of glucose using a commercial spectrofluorometer. Different glucose nanosensors were used to measure the output spectra with fluorescent signals located at the cyan and yellow bands of the spectrum. A new device is presented based on multilayered a-SiC:H heterostructures to detect identical transient visible signals. The transducer consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure optimized for the detection of the fluorescence resonance energy transfer between fluorophores with excitation in the violet (400 nm) and emissions in the cyan (470 nm) and yellow (588 nm) range of the spectrum. Results show that the device photocurrent signal measured under reverse bias and using appropriate steady state optical bias, allows the separate detection of the cyan and yellow fluorescence signals. (C) 2013 Elsevier B.V. All rights reserved.
- Development of a biosensor for urea assay based on amidase inhibition, using an ion-selective electrodePublication . Barbosa, Ana Rita Dantas Balsemão; Karmali, AminA biosensor for urea has been developed based on the observation that urea is a powerful active-site inhibitor of amidase, which catalyzes the hydrolysis of amides such as acetamide to produce ammonia and the corresponding organic acid. Cell-free extract from Pseudomonas aeruginosa was the source of amidase (acylamide hydrolase, EC 3.5.1.4) which was immobilized on a polyethersulfone membrane in the presence of glutaraldehyde; anion-selective electrode for ammonium ions was used for biosensor development. Analysis of variance was used for optimization of the biosensorresponse and showed that 30 mu L of cell-free extract containing 7.47 mg protein mL(-1), 2 mu L of glutaraldehyde (5%, v/v) and 10 mu L of gelatin (15%, w/v) exhibited the highest response. Optimization of other parameters showed that pH 7.2 and 30 min incubation time were optimum for incubation ofmembranes in urea. The biosensor exhibited a linear response in the range of 4.0-10.0 mu M urea, a detection limit of 2.0 mu M for urea, a response timeof 20 s, a sensitivity of 58.245 % per mu M urea and a storage stability of over 4 months. It was successfully used for quantification of urea in samples such as wine and milk; recovery experiments were carried out which revealed an average substrate recovery of 94.9%. The urea analogs hydroxyurea, methylurea and thiourea inhibited amidase activity by about 90%, 10% and 0%, respectively, compared with urea inhibition.
- Development of a flow injection analytical system for short chain amide determination based on a tubular bioreactor and an ammonium sensorPublication . Veríssimo, M.I.S.; Oliveira, Sara B.; Silva, Nelson A. F.; Matos, Manuel; Karmali, Amin; Gomes, Maria Teresa SRPseudomonas aeruginosa (P. aeruginosa) possesses intracellular amidase activity, which catalyses the hydrolysis of short aliphatic amides producing NH4 +, and has already been used along with an ammonium ion selective electrode for amide quantification. However, the incorporation of a biological membrane turned to be a challenging process and either the final arrangement was prone to amidase losses or the recovery of the sensor coating after the interaction took too long. In this article a flow injection system with an ammonium acoustic wave sensor is proposed, and after testing several different arrangements for the biological element, the ultimate choice consisted of the immobilization of a P. aeruginosa cell-free extract in the inner wall of a tubular glass reactor, which resulted in a reliable analytical system. Response times less than one minute and complete recovery in less than two minutes assured conveniently fast analysis. The analytical system, as long as the column was properly stored in HEPES buffer containing 2 mM β-mercaptoethanol and 1 mM benzamidine and refrigerated when not in use, could be used at least for 20 working days, along a period of one month, maintaining the initial sensitivity.
- Extraction of hemoglobin with calixarenes and biocatalysis in organic media of the complex with pseudoactivity of peroxidasePublication . Semedo, Madga Sofia Cardoso Nobre; Karmali, Amin; Barata, Patrícia; Prata, José VirgílioThe present work involves the use of p-tert-butylcalix[4,6,8]arene carboxylic acid derivatives ((t)Butyl[4,6,8]CH2COOH) for selective extraction of hemoglobin. All three calixarenes extracted hemoglobin into the organic phase, exhibiting extraction parameters higher than 0.90. Evaluation of the solvent accessible positively charged amino acid side chains of hemoglobin (PDB entry 1XZ2) revealed that there are 8 arginine, 44 lysine and 30 histidine residues on the protein surface which may be involved in the interactions with the calixarene molecules. The hemoglobin-(t)Butyl[6]CH2COOH complex had pseudoperoxidase activity which catalysed the oxidation of syringaldazine in the presence of hydrogen peroxide in organic medium containing chloroform. The effect of pH, protein and substrate concentrations on biocatalysis was investigated using the hemoglobin-(t)Butyl[6]CH2COOH complex. This complex exhibited the highest specific activity of 9.92 x 10(-2) U mg protein(-1) at an initial pH of 7.5 in organic medium. Apparent kinetic parameters (V'(max), K'(m), k'(cat) and k'(cat)/K'(m)) for the pseudoperoxidase activity were determined in organic media for different pH values from a Michaelis-Menten plot. Furthermore, the stability of the protein-calixarene complex was investigated for different initial pH values and half-life (t(1/2)) values were obtained in the range of 1.96 and 2.64 days. Hemoglobin-calixarene complex present in organic medium was recovered in fresh aqueous solutions at alkaline pH, with a recovery of pseudoperoxidase activity of over 100%. These results strongly suggest that the use of calixarene derivatives is an alternative technique for protein extraction and solubilisation in organic media for biocatalysis.
- Field effect and light-assisted a-Si:H sensors for detection of ions in solutionPublication . Costa, João; Fernandes, Miguel; Vieira, Manuela; Lavareda, G.; Carvalho, Carlos N.; Karmali, AminIn this paper we present an amorphous silicon device that can be used in two operation modes to measure the concentration of ions in solution. While crystalline devices present a higher sensitivity, their amorphous counterpart present a much lower fabrication cost, thus enabling the production of cheap disposable sensors for use, for example, in the food industry. The devices were fabricated on glass substrates by the PECVD technique in the top gate configuration, where the metallic gate is replaced by an electrolytic solution with an immersed Ag/AgCl reference electrode. Silicon nitride is used as gate dielectric enhancing the sensitivity and passivation layer used to avoid leakage and electrochemical reactions. In this article we report on the semiconductor unit, showing that the device can be operated in a light-assisted mode, where changes in the pH produce changes on the measured ac photocurrent. In alternative the device can be operated as a conventional ion selective field effect device where changes in the pH induce changes in the transistor's threshold voltage.
- A Flow Injection Methodology for Acetamide Determination Using a Tubular Bioreactor and na Ammonium Sensor †Publication . Veríssimo, Marta I. S.; Silva, Nelson A. F.; Karmali, Amin; Gomes, Maria Teresa S. R.Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative bacterium quite versatile that grows in the soil, in coastal marine habitats, as well as in the tissues of plants and animals. P. aeruginosa is the source of amidase (acylamide amidohydrolase E.C. 3.5.1.4) which catalyzes the hydrolysis of a small range of short aliphatic amides into the corresponding carboxylic acids and ammonia. A low cost piezoelectric quartz crystal coated with a selective membrane for ammonium was used to detect the reaction product. Conversion of amide into the correspondent amine was achieved both with cell-free extract of P. Aeruginosa or the whole cells. This conversion was first performed in batch and later on injected into the sensor system where a buffer carrier was flowing over the coated crystal. Another approach consisted in incorporating a conversion reactor with the immobilized cell-free extract of P. Aeruginosa in the FIA system. Amide solutions were injected and carried by the buffer stream through the reactor and then directed to the sensor. Different supports were used for immobilization, such as calcium alginate beads, glass beads and the inside walls of a hollow glass column. The best arrangement allowed acetamide determination without sensitivity lost for 1-month period.