Browsing by Author "Alegria, Elisabete"
Now showing 1 - 10 of 84
Results Per Page
Sort Options
- 1D Copper(II)-aroylhydrazone coordination polymers: magnetic properties and microwave assisted oxidation of a secondary alcoholPublication . Sutradhar, Manas; Alegria, Elisabete; Roy Barman, Tannistha; Guedes Da Silva, M. Fátima C.; Liu, Cai-Ming; Pombeiro, ArmandoThe 1D Cu(II) coordination polymers [Cu-3(L-1)(NO3)(4)(H2O)(2)](n) (1) and [Cu-2(H2L2)(NO3)(H2O)(2)](n)(NO3)(n) (2) have been synthesized using the aroylhyrazone Schiff bases N'(1),N'(2)-bis(pyridin-2-ylmethylene)oxalohydrazide (H2L1) and N'(1),N'(3)-bis(2-hydroxybenzylidene)malonohydrazide (H4L2), respectively. They have been characterized by elemental analysis, infrared (IR) spectroscopy, UV-Vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS), single crystal X-ray diffraction and variable temperature magnetic susceptibility measurements (for 2). The ligand (L-1)(2-) coordinates in the iminol form in 1, whereas the amide coordination is observed for (H2L2)(2-) in 2. Either the ligand bridge or the nitrate bridge in 2 mediates weak antiferromagnetic coupling. The catalytic performance of 1 and 2 has been investigated toward the solvent-free microwave-assisted oxidation of a secondary alcohol (1-phenylethanol used as model substrate). At 120 degrees C and in the presence of the nitroxyl radical 2,2,6,6-tetramethylpiperydil-1-oxyl (TEMPO), the complete conversion of 1-phenylethanol into acetophenone occurs with TOFs up to 1,200 h(-1).
- Acylated cyanoimido-complexes trans-[Mo(NCN){NCN(O)R}(DPPE)(2)]Cl and their reactons with electrophiles: Chemical, electrochemical and theoretical studyPublication . Alegria, Elisabete; Silva, Maria de Fátima Costa Guedes da; Kuznetsov, Maxim L.; Cunha, S. M. P. R. M.; Martins, Luisa; Pombeiro, ArmandoTreatment of a dichloromethane solution of trans-[Mo(NCN){NCNC(O)R}(dppe)(2)]Cl [R = Me (1a), Et (1b)] (dppe = Ph2PCH2CH2PPh2) with HBF4, [Et3O][BF4] or EtC(O)Cl gives trans-[Mo(NCN)Cl-(dppe)(2)]X [X = BF4 (2a) or Cl (2b)] and the corresponding acylcyanamides NCN(R')C(O)Et (R' = H, Et or C(O)Et). X-ray diffraction analysis of 2a (X = BF4) reveals a multiple-bond coordination of the cyanoimide ligand. Compounds 1 convert to the bis(cyanoimide) trans-[Mo(NCN)(2)(dppe)(2)] complex upon reaction with an excess of NaOMe (with formation of the respective ester). In an aprotic medium and at a Pt electrode, compounds 1 (R = Me, Et or Ph) undergo a cathodically induced isomerization. Full quantitative kinetic analysis of the voltammetric behaviour is presented and allows the determination of the first-order rate constants and the equilibrium constant of the trans to cis isomerization reaction. The mechanisms of electrophilic addition (protonation) to complexes 1 and the precursor trans[Mo(NCN)(2)(dppe)(2)], as well as the electronic structures, nature of the coordination bonds and electrochemical behaviour of these species are investigated in detail by theoretical methods which indicate that the most probable sites of the proton attack are the oxygen atom of the acyl group and the terminal nitrogen atom, respectively.
- Analysis of metallic nanoparticles embedded in thin film semiconductors for optoelectronic applicationsPublication . Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Louro, Paula; Vieira, Manuela; Silva, R. P. O.; Teixeira, D.; Da Costa Ribeiro, Ana Paula; Prazeres, Duarte; Alegria, ElisabeteThis paper reports about a study of the local plasmonic resonance (LSPR) produced by metal nanoparticles embedded in a dielectric or semiconductor matrix. It is presented an analysis of the LSPR for different nanoparticle metals, shapes, and embedding media composition. Metals of interest for nanoparticle composition are Aluminum and Gold. Shapes of interest are nanospheres and nanotriangles. We study in this work the optical properties of metal nanoparticles diluted in water or embedded in amorphous silicon, ITO and ZnO as a function of size, aspect-ratio and metal type. Following the analysis based on the exact solution of the Mie theory and DDSCAT numerical simulations, it is presented a comparison with experimental measurements realized with arrays of metal nanospheres. Simulations are also compared with the LSPR produced by gold nanotriangles (Au NTs) that were chemically produced and characterized by microscope and optical measurements.
- Antiproliferative activity of heterometallic sodium and potassium-dioxidovanadium(V) polymersPublication . Sutradhar, Manas; Alegria, Elisabete; Ferretti, Francesco; Raposo, Luís R; Guedes Da Silva, M. Fátima C.; Baptista, Pedro; Fernandes, Alexandra; Pombeiro, ArmandoThe syntheses of the heterometallic sodium and potassium-dioxidovanadium 2D polymers, [NaVO2(1 kappa NOO';2 kappa O ''-L)(H2O)](n), (1) and [KVO2(1 kappa NOO';2 kappa O';3 kappa O ''-L)(EtOH)](n) (2) (where the kappa notation indicates the coordinating atoms of the polydentate ligand L) derived from (3,5-di-tert-butyl-2-hydroxybenzylidene)-2-hydroxybenzohydrazide (H2L) are reported. The polymers were characterized by IR, NMR, elemental analysis and single crystal X-ray diffraction analysis. The antiproliferative potential of 1 and 2 was examined towards four human cancer cell lines (ovarian carcinoma, A2780, colorectal carcinoma, HCT116, prostate carcinoma, PC3 and breast adenocarcinoma, MCF-7cell lines) and normal human fibroblasts. Complex 1 and 2 showed the highest cytotoxic activity against A2780 cell line (IC50 8.2 and 11.3 mu M, respectively) with 1 > 2 and an IC50 in the same range as cisplatin (IC50 3.4 mu M; obtained in the same experimental conditions) but, interestingly, with no cytotoxicity to healthy human fibroblasts for concentrations up to 75 mu M. This high cytotoxicity of 1 in ovarian cancer cells and its low cytotoxicity in healthy cells demonstrates its potential for further biological studies. Our results suggest that both complexes induce ovarian carcinoma cell death via apoptosis and autophagy, but autophagy is the main biological cause of the reduction of viability observed and that ROS (reactive oxygen species) may play an important role in triggering cell death.
- Aroylhydrazone Cu(II) complexes in keto form: structural characterization and catalytic activity towards cyclohexane oxidationPublication . Sutradhar, Manas; Alegria, Elisabete; Guedes Da Silva, M. Fátima C.; Martins, Luisa; Pombeiro, ArmandoThe reaction of the Schiff base (3,5-di-tert-butyl-2-hydroxybenzylidene)-2-hydroxybenzohydrazide (H3L) with a copper(II) salt of a base of a strong acid, i.e., nitrate, chloride or sulphate, yielded the mononuclear complexes [Cu(H2L)(NO3)(H2O)] (1), [Cu(H2L)Cl]center dot 2MeOH (2) and the binuclear complex [{Cu(H2L)}(2)(mu-SO4)]center dot 2MeOH (3), respectively, with H2L- in the keto form. Compounds 1-3 were characterized by elemental analysis, Infrared (IR) spectroscopy, Electrospray Ionisation-Mass Spectrometry (ESI-MS) and single crystal X-ray crystallography. All compounds act as efficient catalysts towards the peroxidative oxidation of cyclohexane to cyclohexyl hydroperoxide, cyclohexanol and cyclohexanone, under mild conditions. In the presence of an acid promoter, overall yields (based on the alkane) up to 25% and a turnover number (TON) of 250 (TOF of 42 h(-1)) after 6 h, were achieved.
- Baeyer-Villiger oxidation of Keotones catalysed by rhenium complexes bearing N- Or Oxo-LigandsPublication . Alegria, Elisabete; Martins, Luisa; Kirillova, Marina V.; Pombeiro, ArmandoRhenium (I, III-V or VII) complexes bearing N-donor or oxo-ligands catalyse the Baeyer-Villiger oxidation of cyclic and linear ketones (e.g. 2-methylcyclohexanone, 2-methylcyclopentanone, cyclohexanone, cyclopentanone, cyclobutanone and 3,3-dimethyl-2-butanone) into the corresponding lactones or esters, in the presence of aqueous H2O2 (30%). The effects of various reaction parameters are studied allowing to achieve yields up to 54%.
- Ball milling as an effective method to prepare magnetically recoverable heterometallic catalysts for alcohol oxidationPublication . Fontolan, Emmanuele; Alegria, Elisabete; Da Costa Ribeiro, Ana Paula; Kopylovich, Maximilian; Bertani, Roberta; Pombeiro, ArmandoHeterometallic double Fe2O3–CoCl2, CoCl2–V2O5, MoO3–V2O5, and triple CuO–Fe2O3–CoCl2 3d metal dispersed systems were easily prepared by ball milling at room temperature and characterized by scanning electron microscopy (SEM), field emission gun scanning electron microscopy (FEGSEM), energydispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). They catalyze the microwave-assisted solvent-free heterogeneous oxidation of 1-phenylethanol to acetophenone with tert-butyl hydroperoxide (t-BuOOH) as oxidant, used as a model reaction. In most of the heterometallic systems a significant improvement in the catalytic activity was observed in comparison to homometallic ones. For the tested catalytic systems and experimental conditions, the CuO–Fe2O3–CoCl2 and Fe2O3–CoCl2 systems exhibit the highest activity with maximum 78% yield and TON 39 after 1 h. The possibility of magnetic recovery of the catalysts was demonstrated for the Fe2O3–CoCl2 (3:1) system.
- Benzimidazole Schiff base copper(II) complexes as catalysts for environmental and energy applications: VOC oxidation, oxygen reduction and water splitting reactionsPublication . Paul, Anup; Silva, Tiago A. R.; Soliman, Mohamed M. A.; Karacic, Jozo; Sljukic, Biljana; Alegria, Elisabete; Khan, Rais Ahmad; Guedes Da Silva, M. Fátima C.; Pombeiro, ArmandoThe new copper(II) complexes [Cu(mu-1 kappa O:2 kappa ONN'-HL1)(mu-1 kappa O:2 kappa O'-NO3)](2)center dot[Cu(mu-1 kappa O:2 kappa ONN'-HL1)(CH3OH)](2)(NO3)(2) (1) and [Cu(kappa ONN'-HL2)(mu-1 kappa OO':2 kappa O'-NO3)](n) (2), derived from the new pro-ligands H(2)L1 = 2-(5,6-dihydroindolo[1,2-c]quinazolin-6-yl)-5-methylphenol and H(2)L2 = 2-(5,6-dihydroindolo[1,2-c]quinazolin-6-yl)-4-nitrophenol, were synthesized and characterized by elemental analysis, FT-IR, ESI-MS, and their structural features were unveiled by single-crystal X-ray diffraction analysis. This discloses a dimeric structure for 1 and a polymeric infinite 1D metal-organic chain for 2. The complexes were evaluated as catalysts for the oxidation of toluene, a volatile organic compound (VOC), and for oxygen reduction and water splitting reactions. 1 exhibits a higher activity for the peroxidative conversion of toluene to oxygenated products (total yields up to 38%), whereas 2 demonstrates a superior performance for electrochemical energy conversion applications, i.e., for oxygen reduction (ORR), oxygen evolution (OER) and hydrogen evolution (HER) reactions in an alkaline medium in terms of higher ORR current densities, lower Tafel slope (73 mV dec(-1)) and higher number of electrons exchanged (3.9), comparable to that of commercial Pt/C. Complex 2 also shows a better performance with lower onset potential and higher current densities for both OER and HER when studied as electrocatalyst for water splitting.
- C-scorpionate Au(III) complexes as pre-catalysts for industrially significant toluene oxidation and benzaldehyde esterification reactionsPublication . Lapa, Hugo; Guedes Da Silva, M. Fátima C.; Pombeiro, Armando; Alegria, Elisabete; Martins, LuisaThe new Au(III) complex [AuCl2(Tpms)] (1) and the previously reported [AuCl2(Tpm)]Cl (2), bearing the potentially tridentate ligands tris(1-pyrazolyl)methanesulfonate (SO3C(C3H3N2)(3)(-), Tpms) or hydrotris(1-pyrazolyl) methane (HC(C3H3N2)(3), Tpm), respectively, were synthesized in water at room temperature and characterized using NMR and IR spectroscopy. The molecular structure of 1 was authenticated by single crystal X-ray diffraction analysis. The catalytic performance of the Au(III) complexes was tested, for the first time, in toluene and benzyl alcohol oxidation reactions. The oxidative esterification of benzaldehyde, by-product of toluene oxidation, was further explored. In order to optimize the catalytic systems, the influence of parameters such as temperature, reaction time, amount of pre-catalyst and the presence of additives was evaluated. In the peroxidative (by H2O2 or t-BuOOH) oxidation reactions, a maximum total yield (benzylic alcohol and benzaldehyde) of 8% for toluene oxidation with pre-catalyst 1 (6 h, 80 degrees C, H2O2 30% aq. sol.) and a maximum total yield (benzaldehyde and benzoic acid) of 43% for benzyl alcohol oxidation with pre-catalyst 2 (24 h, 80 degrees C, t-BuOOH 70% aq. sol.) with a selectivity of 72% for benzaldehyde, were obtained. The esterification of benzaldehyde yielded, in the presence of 1, a maximum of 27% and 48% of methyl benzoate, at room temperature and 80 degrees C, respectively, and with a selectivity of 78% for methyl benzoate.
- C-scorpionate iron(II) complexes as highly selective catalysts for the hydrocarboxylation of cyclohexanePublication . Matias, Inês; Da Costa Ribeiro, Ana Paula; Alegria, Elisabete; Pombeiro, Armando; Martins, LuisaThe C-scorpionate iron(II) complexes [FeCl2{kappa(3)-HC(pz)(3)}](1) (pz = pyrazol-1-yl), Li[FeCl2{kappa(3)-SO3C(pz)(3)}] (2) and the new [FeCl2{kappa(3)-HOCH2C(pz)(3)}] (3) act as catalysts for the hydrocarboxylation of cyclohexane (with CO and H2O) to cyclohexanecarboxylic acid in a remarkable yield (up to 60%) and under mild conditions. The catalysts selectivity for the acid can be tuned by CO pressure, catalyst amount and reaction temperature. Complex [FeCl2{kappa(3)-HC(pz)(3)}] (1) provides the most effective catalyst requiring low CO pressure. This work constitutes an unprecedented use of iron complexes as catalysts for the hydrocarboxylation of alkanes.