Repository logo
 
Publication

Howson's property for semidirect products of semilattices by groups

dc.contributor.authorSilva, Pedro V.
dc.contributor.authorSoares, Filipa
dc.date.accessioned2017-07-12T14:44:48Z
dc.date.available2017-07-12T14:44:48Z
dc.date.issued2016
dc.description.abstractAn inverse semigroup S is a Howson inverse semigroup if the intersection of finitely generated inverse subsemigroups of S is finitely generated. Given a locally finite action of a group G on a semilattice E, it is proved that E*G is a Howson inverse semigroup if and only if G is a Howson group. It is also shown that this equivalence fails for arbitrary actions.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationSILVA, Pedro V.; SOARES, Filipa. - Howson's property for semidirect products of semilattices by groups. Communications in Algebra. ISSN 0092-7872. Vol. 44, N.º 6, (2016), pp. 2482–2494pt_PT
dc.identifier.doi10.1080/00927872.2015.1053903pt_PT
dc.identifier.issn0092-7872
dc.identifier.urihttp://hdl.handle.net/10400.21/7268
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherTaylor & Francispt_PT
dc.relation.publisherversionhttps://arxiv.org/pdf/1412.3048.pdfpt_PT
dc.subjectE-unitary inverse semigrouppt_PT
dc.subjectHowson’s theorempt_PT
dc.subjectlocally finite actionpt_PT
dc.subjectsemidirect product of a semilattice by a group.pt_PT
dc.titleHowson's property for semidirect products of semilattices by groupspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage2494
oaire.citation.issue6pt_PT
oaire.citation.startPage2482
oaire.citation.titleCOMMUNICATIONS IN ALGEBRApt_PT
oaire.citation.volume44pt_PT
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Howson's Property_FSoares_ADM.pdf
Size:
142.15 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: