Repository logo
 
Publication

Mining users mobility at public transportation

dc.contributor.authorBaeta, Nuno
dc.contributor.authorFernandes, Agnelo
dc.contributor.authorFerreira, João
dc.date.accessioned2017-02-20T11:44:39Z
dc.date.available2017-02-20T11:44:39Z
dc.date.issued2017-04-07
dc.description.abstractIn this research work we propose a new approach to estimate the number of passengers in a public transportation and determinate the users’ route path based on a passive approach without user intervention. The method is based on the probe requests of users mobile device through the collected data in wireless access point. This data is manipulated to extract the information about the numbers of users with mobile devices and track their route path and time. This data can be manipulated to extract useful knowledge related with users’ habits at public transportation and extract user mobility patterns.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationBAETA, Nuno; FERNANDES, Agnelo; FERREIRA, João – Mining users mobility at public transportation. Inteligência Artificial. ISSN 1137-3601. Vol. 20, N.º 59 (2017), pp. 32-41.pt_PT
dc.identifier.doihttps://doi.org/10.4114/intartif.vol20iss59pp32-41pt_PT
dc.identifier.issn1137-3601
dc.identifier.issn1988-3064
dc.identifier.urihttp://hdl.handle.net/10400.21/6825
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherInteligencia Artificialpt_PT
dc.relation.publisherversionhttp://journal.iberamia.org/index.php/intartif/article/view/22/28pt_PT
dc.subjectWi-Fipt_PT
dc.subjectMobile Devicept_PT
dc.subjectTrackingpt_PT
dc.subjectGPSpt_PT
dc.subjectArtificial Intelligentpt_PT
dc.subjectKnowledgept_PT
dc.titleMining users mobility at public transportationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage41pt_PT
oaire.citation.issue59pt_PT
oaire.citation.startPage32pt_PT
oaire.citation.volume20pt_PT
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Mining_NBaeta_.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: