Repository logo
 
Publication

Optimal homotopy analysis of a chaotic HIV-1 model incorporating AIDS-related cancer cells

dc.contributor.authorDuarte, Jorge
dc.contributor.authorJanuário, Cristina
dc.contributor.authorMartins, Nuno
dc.contributor.authorRamos, Carlos
dc.contributor.authorRodrigues, Carla
dc.contributor.authorSardanyés, Josep
dc.date.accessioned2018-01-26T11:09:03Z
dc.date.available2018-01-26T11:09:03Z
dc.date.issued2018-01
dc.description.abstractThe studies of nonlinear models in epidemiology have generated a deep interest in gaining insight into the mechanisms that underlie AIDS-related cancers, providing us with a better understanding of cancer immunity and viral oncogenesis. In this article, we analyze an HIV-1 model incorporating the relations between three dynamical variables: cancer cells, healthy CD4 + T lymphocytes, and infected CD4 + T lymphocytes. Recent theoretical investigations indicate that these cells interactions lead to different dynamical outcomes, for instance to periodic or chaotic behavior. Firstly, we analytically prove the boundedness of the trajectories in the system’s attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. Our calculations reveal that the highest observable variable is the population of cancer cells, thus indicating that these cells could be monitored in future experiments in order to obtain time series for attractor’s reconstruction. We identify different dynamical behaviors of the system varying two biologically meaningful parameters: r 1, representing the uncontrolled proliferation rate of cancer cells, and k 1, denoting the immune system’s killing rate of cancer cells. The maximum Lyapunov exponent is computed to identify the chaotic regimes. Considering very recent developments in the literature related to the homotopy analysis method (HAM), we calculate the explicit series solutions of the cancer model and focus our analysis on the dynamical variable with the highest observability index. An optimal homotopy analysis approach is used to improve the computational efficiency of HAM by means of appropriate values for the convergence control parameter, which greatly accelerate the convergence of the series solution. The approximated analytical solutions are used to compute density plots, which allow us to discuss additional dynamical features of the model.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationDUARTE, Jorge; [et al] – Optimal homotopy analysis of a chaotic HIV-1 model incorporating AIDS-related cancer cells. Numerical Algorithms. ISSN 1017-1398. Vol 77, N.º 1 (2018), pp. 261–288pt_PT
dc.identifier.issn1017-1398
dc.identifier.issn1572-9265
dc.identifier.urihttp://hdl.handle.net/10400.21/7975
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringer Publishing Companypt_PT
dc.relation.publisherversionhttps://link.springer.com/content/pdf/10.1007%2Fs11075-017-0314-0.pdfpt_PT
dc.subjectChaotic HIV-1 modelpt_PT
dc.subjectObservabilitypt_PT
dc.subjectExplicit series solutionspt_PT
dc.subjectOptimal homotopy analysispt_PT
dc.titleOptimal homotopy analysis of a chaotic HIV-1 model incorporating AIDS-related cancer cellspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FMAT%2F04459%2F2013/PT
oaire.citation.endPage288pt_PT
oaire.citation.issue1pt_PT
oaire.citation.startPage261pt_PT
oaire.citation.titleNumerical Algorithmspt_PT
oaire.citation.volume77pt_PT
oaire.fundingStream5876
person.familyNameDuarte
person.familyNameJanuário
person.familyNameRamos
person.givenNameJorge
person.givenNameCristina
person.givenNameCarlos
person.identifier.ciencia-idBC1D-1E83-E2B2
person.identifier.ciencia-id101B-390C-E67C
person.identifier.ciencia-idC21E-290B-0DC2
person.identifier.orcid0000-0003-2641-3199
person.identifier.orcid0000-0002-6978-876X
person.identifier.orcid0000-0003-2173-0101
person.identifier.orcid0000-0002-6772-7920
person.identifier.ridG-7261-2011
person.identifier.scopus-author-id35310049800
person.identifier.scopus-author-id56526791400
person.identifier.scopus-author-id6506989197
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication4dbec82a-caa4-4662-b156-af73687e867f
relation.isAuthorOfPublication42a4023b-b4c4-4456-aaba-d97bf8c14d6a
relation.isAuthorOfPublication6e9ff6c6-8d58-4709-a86a-35b37f81ad8f
relation.isAuthorOfPublication51dec08d-22cf-4081-b4bd-9d9751dc0d80
relation.isAuthorOfPublication.latestForDiscovery4dbec82a-caa4-4662-b156-af73687e867f
relation.isProjectOfPublicatione3359c7a-ed44-45ec-b5c0-dec87c1fdfea
relation.isProjectOfPublication.latestForDiscoverye3359c7a-ed44-45ec-b5c0-dec87c1fdfea

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Optimal_JDuarte_ADM.pdf
Size:
3.68 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: