Name: | Description: | Size: | Format: | |
---|---|---|---|---|
463.63 KB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
O problema da redução de dimensionalidade é relevante em diversas áreas da engenharia, nomeadamente em processamento de sinais e reconhecimento de padrões. Enquanto o caso linear pode ser resolvido com recurso à conhecida técnica de Análise em Componentes Principais, o caso não-linear é mais complexo. Recentemente, têm sido feitos avanços baseados na aprendizagem de variedades para aproximar os dados. Neste artigo apresenta-se um algoritmo designado Tangent Bundle Approximation (TBA), ou Aproximação do Fibrado Tangente, que segue a mesma abordagem, com vantagens computacionais relativamente a outras técnicas, para conjuntos de dados na ordem dos milhares de pontos. Outra vantagem do algoritmo TBA é fornecer uma estimativa da correcta dimensão intrínseca da variedade que aproxima os dados. Neste artigo apresenta-se uma descrição do TBA, ilustrada com resultados experimentais numa sequência vídeo.
Description
Keywords
Redução de dimensionalidade Processamento de sinais Reconhecimento de padrões
Citation
SILVA, J. G.; MARQUES, J. S.; LEMOS, J. M. – Redução de dimensionalidade não-linear para seguimento de movimento. In JETC05 – Jornadas de Engenharia de Eletrónica e Telecomunicações e de Computadores. Lisboa, Portugal: ISEL – Instituto Superior de Engenharia de Lisboa, 2005. Pp. 1-7
Publisher
ISEL - Instituto Superior de Engenharia de Lisboa