Logo do repositório
 
Publicação

Heat transfer mechanisms in refrigerated spaces: a comparative study of experiments, CFD predictions and heat load software accuracy

authorProfile.emailbiblioteca@isel.pt
datacite.subject.fosEngenharia e Tecnologia::Engenharia Mecânica
dc.contributor.authorLança, Miguel
dc.contributor.authorGarcia, João Nuno Pinto Miranda
dc.contributor.authorGomes, João
dc.date.accessioned2026-01-07T10:03:53Z
dc.date.available2026-01-07T10:03:53Z
dc.date.issued2025-11-29
dc.descriptionThis research was funded by TechUPGRADE, Thermochemical Heat Recovery & Upgrade for the Industrial Landscape. Grant agreement ID: 101103966.
dc.description.abstractA correct cold room heat load calculation ensures that the refrigeration system operates efficiently, reducing operating costs while maintaining a constant temperature to prevent stored goods from spoiling. Refrigeration engineers typically use software to size equipment such as expansion devices and evaporators and to estimate heat loads in cold rooms. These tools are available for free from refrigeration manufacturers or can be purchased from software developers. Although practical and easy to use, most of these programs do not follow the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE)-recommended approach for estimating heat loads. This article evaluates heat transfer mechanisms, especially natural convection in a refrigerator, through experimental and CFD simulations. Depending on the expression used, the estimated convection heat flux at the evaporator ranged from 5.3 W to 14.2 W in case 0-N, 7.7 W to 25.1 W in case −10-N, and 5.1 W to 22.4 W in case 0-Y. Compared to convective heat transfer, radiation heat flux estimations are often more consistent across different expressions. The results from validated simulations were used to assess the performance of cold room heat load estimation software. Differences of up to 236% in heat load estimates were reported between the results.eng
dc.identifier.citationLança, M., Garcia, J., & Gomes, J. (2025). Heat Transfer Mechanisms in Refrigerated Spaces: A comparative study of experiments, CFD predictions and heat load software accuracy. Energies, 18(23), 6280. https://doi.org/10.3390/en18236280
dc.identifier.doi10.3390/en18236280
dc.identifier.eissn1996-1073
dc.identifier.urihttp://hdl.handle.net/10400.21/22448
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI AG
dc.relation.hasversionhttps://www.mdpi.com/1996-1073/18/23/6280
dc.relation.ispartofEnergies
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectRefrigeration
dc.subjectColdroom design
dc.subjectCFD
dc.subjectHeat transfer coefficient
dc.subjectHeat gains
dc.titleHeat transfer mechanisms in refrigerated spaces: a comparative study of experiments, CFD predictions and heat load software accuracyeng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage26
oaire.citation.issue23
oaire.citation.startPage1
oaire.citation.titleEnergies
oaire.citation.volume18
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43
person.affiliation.nameISEL - Instituto Superior de Engenharia de Lisboa, Instituto Poilitécnico de Lisboa
person.familyNameLança
person.familyNameGarcia
person.givenNameMiguel
person.givenNameJoão Nuno Pinto Miranda
person.identifier.ciencia-id8311-FDEC-9935
person.identifier.orcid0000-0003-3891-9808
person.identifier.orcid0000-0002-7181-6408
person.identifier.ridIWE-1968-2023
person.identifier.scopus-author-id56288478500
relation.isAuthorOfPublication07af41a4-497a-455d-9501-b7dba093ea7b
relation.isAuthorOfPublication95c47e2b-69cc-41aa-a260-f12b9cb17f86
relation.isAuthorOfPublication.latestForDiscovery95c47e2b-69cc-41aa-a260-f12b9cb17f86

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
Heat transfer_MLanca.pdf
Tamanho:
4.03 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
4.03 KB
Formato:
Item-specific license agreed upon to submission
Descrição: