Repository logo
 
Publication

Fractal Laplace transform: analyzing fractal curves

authorProfile.emailbiblioteca@isel.pt
datacite.subject.fosCiências Naturais::Matemáticas
dc.contributor.authorKhalili Golmankhaneh, Alireza
dc.contributor.authorWelch, Kerri
dc.contributor.authorSerpa, Cristina
dc.contributor.authorRodríguez-Lopez, Rosana
dc.date.accessioned2025-09-26T11:04:50Z
dc.date.available2025-09-26T11:04:50Z
dc.date.issued2023-10-27
dc.descriptionCristina Serpa acknowledges partial funding by national funds through FCTFoundation for Science and Technology, project reference: UIDB/04561/2020.
dc.description.abstractThe concept of Laplace transform has been extended to fractal curves, enabling the solution of fractal differential equations with constant coefficients. This extension, known as the fractal Laplace transform, is particularly useful for handling inhomogeneous differential equations that involve delta Dirac functions and step functions within the realm of fractal functions. A comprehensive table of essential formulas for the fractal Laplace transform has been compiled to facilitate its application in various scenarios. By utilizing this transformative approach, researchers can now delve into the study of fractal functions and address complex problems involving non-traditional geometries. To illustrate the practicality of the fractal Laplace transform, several examples are provided, showcasing its effectiveness in solving fractal differential equations. This advancement represents a significant augmentation of the classical Laplace transform, tailored to suit the distinctive characteristics of fractal systems and functions.eng
dc.identifier.citationGolmankhaneh, A. K., Welch, K., Serpa, C., & Rodríguez-Lopez, R. (2023). Fractal Laplace transform: analyzing fractal curves. Journal of Analysis, 32(2), 1111-1137. https://doi.org/10.1007/s41478-023-00677-1
dc.identifier.doihttps://doi.org/10.1007/s41478-023-00677-1
dc.identifier.eissn2367-2501
dc.identifier.issn0971-3611
dc.identifier.urihttp://hdl.handle.net/10400.21/22157
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer Nature
dc.relationCenter for Mathematics, Fundamental Applications and Operations Research
dc.relation.hasversionhttps://link.springer.com/article/10.1007/s41478-023-00677-1
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectFractal calculus
dc.subjectFractal laplace transform
dc.subjectFractal dirac function
dc.subjectFractal curves
dc.subjectUIDB/04561/2020
dc.titleFractal Laplace transform: analyzing fractal curveseng
dc.typeresearch article
dspace.entity.typePublication
oaire.awardTitleCenter for Mathematics, Fundamental Applications and Operations Research
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04561%2F2020/PT
oaire.citation.endPage1137
oaire.citation.issue2
oaire.citation.startPage1111
oaire.citation.titleJournal of Analysis
oaire.citation.volume32
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43
person.familyNameKhalili Golmankhaneh
person.familyNameSerpa
person.givenNameAlireza
person.givenNameCristina
person.identifier.ciencia-id1B15-DA44-023A
person.identifier.orcid0000-0002-5008-0163
person.identifier.orcid0000-0002-8561-118X
person.identifier.ridL-1554-2013
person.identifier.ridO-8331-2015
person.identifier.scopus-author-id56538324400
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublication6f4da37b-3b1e-4613-9133-062719dac537
relation.isAuthorOfPublication3fb42403-d3c8-4217-aaab-47a7add778e2
relation.isAuthorOfPublication.latestForDiscovery6f4da37b-3b1e-4613-9133-062719dac537
relation.isProjectOfPublicationc3ed7fa9-be2d-4c08-9872-35ba23cbbc85
relation.isProjectOfPublication.latestForDiscoveryc3ed7fa9-be2d-4c08-9872-35ba23cbbc85

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fractal_CSerpa.pdf
Size:
417.53 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: