Repository logo
 
Publication

Deep learning searches for vector-like leptons at the LHC and electron/muon colliders

dc.contributor.authorMorais, António P.
dc.contributor.authorOnofre, António
dc.contributor.authorFreitas, Felipe F.
dc.contributor.authorGonçalves, João
dc.contributor.authorPasechnik, Roman
dc.contributor.authorSantos, Rui
dc.date.accessioned2024-03-26T18:33:41Z
dc.date.available2024-03-26T18:33:41Z
dc.date.issued2023
dc.description.abstracthe discovery potential of both singlet and doublet vector-like leptons (VLLs) at the Large Hadron Collider (LHC) as well as at the not-so-far future muon and electron machines is explored. The focus is on a single production channel for LHC direct searches while double production signatures are proposed for the leptonic colliders. A Deep Learning algorithm to determine the discovery (or exclusion) statistical significance at the LHC is employed. While doublet VLLs can be probed up to masses of 1 TeV, their singlet counterparts have very low cross sections and can hardly be tested beyond a few hundreds of GeV at the LHC. This motivates a physics-case analysis in the context of leptonic colliders where one obtains larger cross sections in VLL double production channels, allowing to probe higher mass regimes otherwise inaccessible even to the LHC high-luminosity upgrade.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMorais, A.P., Onofre, A., Freitas, F.F. et al. Deep learning searches for vector-like leptons at the LHC and electron/muon colliders. Eur. Phys. J. C 83, 232 (2023). https://doi.org/10.1140/epjc/s10052-023-11314-3pt_PT
dc.identifier.doi10.1140/epjc/s10052-023-11314-3pt_PT
dc.identifier.issn1434-6044
dc.identifier.urihttp://hdl.handle.net/10400.21/17222
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relationCERN/FISPAR /0002/2017pt_PT
dc.relationCenter for Research and Development in Mathematics and Applications
dc.relationCenter for Research and Development in Mathematics and Applications
dc.relationFrom Higgs Phenomenology to the Unification of Fundamental Interactions
dc.relationCollider and gravitational echoes of Full Unification with deep-learning
dc.relationCollider, gravitational and dark echoes of Grand Unification with Deep Learning
dc.relationCenter for Theoretical and Computational Physics
dc.relationCenter for Theoretical and Computational Physics
dc.relationStandard Model Extensions at the LHC
dc.relationPhenomenological Studies @ the LHC on Top Quark and Higgs Physics
dc.relation.publisherversionhttps://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11314-3.pdfpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectDeep learningpt_PT
dc.subjectLarge Hadron Colliderpt_PT
dc.titleDeep learning searches for vector-like leptons at the LHC and electron/muon colliderspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCenter for Research and Development in Mathematics and Applications
oaire.awardTitleCenter for Research and Development in Mathematics and Applications
oaire.awardTitleFrom Higgs Phenomenology to the Unification of Fundamental Interactions
oaire.awardTitleCollider and gravitational echoes of Full Unification with deep-learning
oaire.awardTitleCollider, gravitational and dark echoes of Grand Unification with Deep Learning
oaire.awardTitleCenter for Theoretical and Computational Physics
oaire.awardTitleCenter for Theoretical and Computational Physics
oaire.awardTitleStandard Model Extensions at the LHC
oaire.awardTitlePhenomenological Studies @ the LHC on Top Quark and Higgs Physics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04106%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04106%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FFIS-PAR%2F31000%2F2017/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/CERN%2FFIS-PAR%2F0021%2F2021/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/CERN%2FFIS-PAR%2F0019%2F2021/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/POR_CENTRO/2021.04527.BD/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00618%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00618%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/CERN%2FFIS-PAR%2F0014%2F2019/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/CERN%2FFIS-PAR%2F0029%2F2019/PT
oaire.citation.endPage24pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleThe European Physical Journal Cpt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream3599-PPCDT
oaire.fundingStream3599-PPCDT
oaire.fundingStream3599-PPCDT
oaire.fundingStreamPOR_CENTRO
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream3599-PPCDT
oaire.fundingStream3599-PPCDT
person.familyNameSantos
person.givenNameRui
person.identifier100360
person.identifier.ciencia-id5A1A-5794-6DC2
person.identifier.orcid0000-0002-7948-0355
person.identifier.ridF-1956-2010
person.identifier.scopus-author-id10739338800
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationf972a9bd-1bdd-4a47-8d1e-94e9595eddc0
relation.isAuthorOfPublication.latestForDiscoveryf972a9bd-1bdd-4a47-8d1e-94e9595eddc0
relation.isProjectOfPublicationb1b69ef5-a603-47d9-9ab4-8dd06e62b23f
relation.isProjectOfPublicationf35c639c-6320-4b89-99c0-d3cac702898e
relation.isProjectOfPublicationf668835c-f098-455f-ba34-72ae7f9cc1a8
relation.isProjectOfPublication50614cf7-52be-4c13-b035-4dd2ee241369
relation.isProjectOfPublication7eb08675-ab1b-4967-8fad-c5c2560d62f7
relation.isProjectOfPublicationc96e1165-bf29-45bb-8209-10fafa478ddf
relation.isProjectOfPublication7052b9de-d45e-4ccb-94f2-4d1607f6554b
relation.isProjectOfPublication1c4241bc-cdb2-4223-8151-958d99b4b167
relation.isProjectOfPublicationdc3188c3-7ca0-4083-b4f1-936e914747fa
relation.isProjectOfPublication27f758bb-979c-4be5-b795-57e7cd7192e2
relation.isProjectOfPublication.latestForDiscoverydc3188c3-7ca0-4083-b4f1-936e914747fa

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Deep learning.pdf
Size:
2.01 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: