Repository logo
 
Publication

Neural-network approach to modeling liquid crystals in complex confinement

dc.contributor.authorSantos-Silva, T.
dc.contributor.authorTeixeira, Paulo
dc.contributor.authorAnquetil-Deck, C.
dc.contributor.authorCleaver, D. J.
dc.date.accessioned2015-08-25T10:44:50Z
dc.date.available2015-08-25T10:44:50Z
dc.date.issued2014-03
dc.description.abstractFinding the structure of a confined liquid crystal is a difficult task since both the density and order parameter profiles are nonuniform. Starting from a microscopic model and density-functional theory, one has to either (i) solve a nonlinear, integral Euler-Lagrange equation, or (ii) perform a direct multidimensional free energy minimization. The traditional implementations of both approaches are computationally expensive and plagued with convergence problems. Here, as an alternative, we introduce an unsupervised variant of the multilayer perceptron (MLP) artificial neural network for minimizing the free energy of a fluid of hard nonspherical particles confined between planar substrates of variable penetrability. We then test our algorithm by comparing its results for the structure (density-orientation profiles) and equilibrium free energy with those obtained by standard iterative solution of the Euler-Lagrange equations and with Monte Carlo simulation results. Very good agreement is found and the MLP method proves competitively fast, flexible, and refinable. Furthermore, it can be readily generalized to the richer experimental patterned-substrate geometries that are now experimentally realizable but very problematic to conventional theoretical treatments.por
dc.identifier.citationSANTOS-SILVA; TEIXEIRA, Paulo Ivo Cortez; ANQUETIL-DECK, C.; CLEAVER, D. J. – Neural-network approach to modeling liquid crystals in complex confinement. Physical Review E. ISSN: 1539-3755. Vol. 89, nr. 5 (2014), Art. nr. 053316por
dc.identifier.urihttp://hdl.handle.net/10400.21/4986
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherAmer Physical Societypor
dc.relation.ispartofseries053316
dc.subjectAlignmentpor
dc.subjectFluidspor
dc.subjectParticlespor
dc.subjectInterfacepor
dc.subjectBehaviorpor
dc.subjectPhasespor
dc.titleNeural-network approach to modeling liquid crystals in complex confinementpor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceUSApor
oaire.citation.issue5por
oaire.citation.titlePhysical Review Epor
oaire.citation.volume89por
person.familyNameTeixeira
person.givenNamePaulo
person.identifier.ciencia-idB31A-0CBD-8AC4
person.identifier.orcid0000-0003-2315-2261
person.identifier.ridA-2682-2009
person.identifier.scopus-author-id7005895098
rcaap.rightsclosedAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication35a012c6-2e8b-402f-9b82-065843fce9aa
relation.isAuthorOfPublication.latestForDiscovery35a012c6-2e8b-402f-9b82-065843fce9aa

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Neural network.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: