Repository logo
 
Publication

Spatiotemporal wind energy forecasting: a comprehensive survey and a deep equilibrium-based case study with stemGNN

authorProfile.emailbiblioteca@isel.pt
datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
dc.contributor.authorAquino, Luiza Scapinello
dc.contributor.authorSeman, Laio Oriel
dc.contributor.authorMariani, Viviana Cocco
dc.contributor.authorCoelho, Leandro Dos Santos
dc.contributor.authorStefenon, Stefano Frizzo
dc.contributor.authorGonzález, Gabriel Villarrubia
dc.date.accessioned2025-11-25T09:29:51Z
dc.date.available2025-11-25T09:29:51Z
dc.date.issued2025-07-24
dc.description.abstractAccurate spatiotemporal wind energy forecasting is essential for ensuring grid stability and maximizing the efficiency of renewable energy systems. This paper addresses the challenge of modeling the complex spatial and temporal dependencies inherent in wind power generation by presenting a comprehensive survey of existing spatiotemporal forecasting methods and introducing an innovative deep learning approach. The proposed model integrates a Graph Neural Network (GNN) to represent wind turbines as nodes within a graph, capturing spatial relationships, while a Deep Equilibrium Model (DEQ) enables equilibrium-based inference to handle highly nonlinear wind patterns. A Sequence-to-Sequence (Seq2Seq) architecture further manages temporal dependencies. The method was validated using a real-world dataset of wind power generation, outperforming baseline models across multiple forecast horizons and maintaining stable accuracy across short- and mid-term predictions. Results demonstrate that the proposed GNN with DEQ effectively models both spatial and temporal dynamics for Seq2Seq data, improving prediction accuracy while maintaining computational efficiency. This study highlights the potential of equilibrium-based spatiotemporal graph models for wind energy forecasting and provides a robust tool for better integration of wind power into modern power grids.eng
dc.identifier.citationAquino, L. S., Seman, L. O., Mariani, V. C., Coelho, L. S., Stefenon, S. F., & González, G. V. (2025). Spatiotemporal wind energy forecasting: a comprehensive survey and a deep equilibrium-based case study with stemGNN. IEEE Access, 13, 131461- 131482. https://doi.org/10.1109/ACCESS.2025.3586997
dc.identifier.doi10.1109/access.2025.3586997
dc.identifier.eissn2169-3536
dc.identifier.urihttp://hdl.handle.net/10400.21/22286
dc.language.isoeng
dc.peerreviewedyes
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.hasversionhttps://ieeexplore.ieee.org/document/11095688
dc.relation.ispartofIEEE Access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectWind energy
dc.subjectGraph neural network
dc.subjectDeep equilibrium
dc.subjectSpatiotemporal forecasting
dc.titleSpatiotemporal wind energy forecasting: a comprehensive survey and a deep equilibrium-based case study with stemGNNeng
dc.typeresearch article
dspace.entity.typePublication
oaire.citation.endPage131482
oaire.citation.startPage131461
oaire.citation.titleIEEE Access
oaire.citation.volume13
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Spatiotemporal_SFStefenon.pdf
Size:
3.16 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: