Repository logo
 
Publication

Cognitive radio with machine learning to increase spectral efficiency in indoor application on the 2.5 GHz band

authorProfile.emailbiblioteca@isel.pt
datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
dc.contributor.authorSoares, Marilson Duarte
dc.contributor.authorPassos, Diego
dc.contributor.authorCastellanos, Pedro Vladimir Gonzalez
dc.date.accessioned2025-09-04T12:25:55Z
dc.date.available2025-09-04T12:25:55Z
dc.date.issued2023-05-19
dc.description.abstractDue to the propagation characteristics in the 2.5 GHz band, the signal is significantly degraded by building entry loss (BEL), making coverage in indoor environments in some cases non-existent. Signal degradation inside buildings is a challenge for planning engineers, but it can be seen as a spectrum usage opportunity for a cognitive radio communication system. This work presents a methodology based on statistical modeling of data collected by a spectrum analyzer and the application of machine learning (ML) to leverage the use of those opportunities by autonomous and decentralized cognitive radios (CRs), independent of any mobile operator or external database. The proposed design targets using as few narrowband spectrum sensors as possible in order to reduce the cost of the CRs and sensing time, as well as improving energy efficiency. Those characteristics make our design especially interesting for internet of things (IoT) applications or low-cost sensor networks that may use idle mobile spectrum with high reliability and good recall.eng
dc.identifier.citationSoares, M. D., Passos, D., & Castellanos, P. V. G. (2023). Cognitive radio with machine learning to increase spectral efficiency in indoor application on the 2.5 GHz band. Sensors, 23(10), 1-24. https://doi.org/10.3390/s23104914
dc.identifier.doihttps://doi.org/10.3390/s23104914
dc.identifier.eissn1424-8220
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10400.21/22115
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.relation.hasversionhttps://www.mdpi.com/1424-8220/23/10/4914
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectOpportunistic system
dc.subjectSpectral efficiency
dc.subjectIndoor applications
dc.subject2
dc.subject2.5 GHz LTE
dc.subjectMachine learning
dc.titleCognitive radio with machine learning to increase spectral efficiency in indoor application on the 2.5 GHz bandeng
dc.typeresearch article
dspace.entity.typePublication
oaire.citation.endPage24
oaire.citation.issue10
oaire.citation.startPage1
oaire.citation.titleSensors
oaire.citation.volume23
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43
person.familyNamePassos
person.givenNameDiego
person.identifier.orcid0000-0002-9707-1176
person.identifier.scopus-author-id24478915900
relation.isAuthorOfPublication1baae68b-74ca-4d47-9c93-d990147ada03
relation.isAuthorOfPublication.latestForDiscovery1baae68b-74ca-4d47-9c93-d990147ada03

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cognitive_DPassos.pdf
Size:
4.98 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: