Logo do repositório
 
Miniatura indisponível
Publicação

Dynamic phylogenetic inference for sequence-based typing data

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
Dynamic_CVaz.pdf744.23 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Typing methods are widely used in the surveillance of infectious diseases, outbreaks investigation and studies of the natural history of an infection. And their use is becoming standard, in particular with the introduction of High Throughput Sequencing (HTS). On the other hand, the data being generated is massive and many algorithms have been proposed for phylogenetic analysis of typing data, such as the goeBURST algorithm. These algorithms must however be run whenever new data becomes available starting from scratch. We address this issue proposing a dynamic version of goeBURST algorithm. Experimental results show that this new version is efficient on integrating new data and updating inferred evolutionary patterns, improving the update running time by at least one order of magnitude.

Descrição

Palavras-chave

Phylogenetic inference Phylogenetic trees Dynamic algorithms Sequence-based typing data

Contexto Educativo

Citação

FRANCISCO, Alexandre P.; NASCIMENTO, Marta; VAZ, Cátia – Dynamic phylogenetic inference for sequence-based typing data. In ACM-BCB '17: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics. Boston, MA, USA: ACM Digital Library, 2017. ISBN 978-1-4503-4722-8. Pp. 604

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

ACM Digital Library

Licença CC

Métricas Alternativas