Repository logo
 
Publication

Automatic backhaul planning for 5G Open RAN Networks based on MNO Data

dc.contributor.authorMarques, Beatriz
dc.contributor.authorParracho, Diogo
dc.contributor.authorSousa, Marco
dc.contributor.authorVieira, Pedro
dc.contributor.authorQueluz, M. Paula
dc.contributor.authorRodrigues, A.
dc.date.accessioned2023-05-03T09:28:44Z
dc.date.available2023-05-03T09:28:44Z
dc.date.issued2022-08-03
dc.description.abstractThe Quality of Service (QoS) requirements for the 5th Generation (5G) services are ambitious and broad, particularly for the latency targets. To cover those, a flexible and cost-efficient Radio Access Network (RAN) is essential as proposed by the Open-RAN (O-RAN) concept. In addition, the deployment of O-RAN 5G networks can be expedited by considering network access, aggregation, and core locations of legacy technologies, where physical requisites as power supply, fiber optic links, and others are already met. With this in mind, this paper extends previous simulation work that proposed a radio network planning algorithm for 5G Millimeter Wave (mmWave) small cells to O-RAN-based networks. The backhaul planning algorithm considers both the 5G/O-RAN QoS constraints, a real 4th Generation (4G) network topology, and the respective Key Performance Indicators (KPIs) from a Mobile Network Operator (MNO) as the foundation to plan an O-RAN compliant backhaul network. Our findings identified that the latency of current networks is greatly determined by the network load. In the utmost case, comparing the network baseline and busy hour KPIs, the baseline planned O-RAN network requires 7%of the equivalent busy hour network nodes. This approach has the potential to help MNOs to outline an enlightened strategy, minimizing Capital Expenditure (CAPEX) and augmenting QoS towards upgrading legacy networks to O-RAN 5G networks.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMARQUES, B.; [et al] – Automatic backhaul planning for 5G Open RAN Networks based on MNO Data. In 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON). Palermo, Italy: IEEE, 2022. ISBN 978-1-6654-4280-0. Pp. 301-306.pt_PT
dc.identifier.doi10.1109/MELECON53508.2022.9842876pt_PT
dc.identifier.eissn2158-8481
dc.identifier.isbn978-1-6654-4280-0
dc.identifier.isbn978-1-6654-4281-7
dc.identifier.issn2158-8473
dc.identifier.urihttp://hdl.handle.net/10400.21/15965
dc.language.isoengpt_PT
dc.publisherIEEEpt_PT
dc.relationAI4GREEN 16/SI/2019 - I&DT Empresarial (Proje tos Copromoc¸ao), through the international project CELTIC- ˜ NEXT/EUREKA (C2018/1-5)pt_PT
dc.relation.publisherversionhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9842876pt_PT
dc.subject5Gpt_PT
dc.subjectOpen RANpt_PT
dc.subjectCloud Networkpt_PT
dc.subjectNetwork Planningpt_PT
dc.subjectKPIspt_PT
dc.titleAutomatic backhaul planning for 5G Open RAN Networks based on MNO Datapt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlacePalermo, Italy - 14-16 June 2022pt_PT
oaire.citation.endPage306pt_PT
oaire.citation.startPage301pt_PT
oaire.citation.title2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)pt_PT
person.familyNameVieira
person.givenNamePedro
person.identifier.ciencia-id071B-9A70-15B8
person.identifier.orcid0000-0003-0279-8741
person.identifier.scopus-author-id7004567421
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication51ae3527-d4ea-46f4-b6c9-62c7b77ac728
relation.isAuthorOfPublication.latestForDiscovery51ae3527-d4ea-46f4-b6c9-62c7b77ac728

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Automatic_PVieira.pdf
Size:
3.03 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: