Logo do repositório
 
Publicação

Electricity demand profile prediction based on household characteristics

dc.contributor.authorViegas, Ivan
dc.contributor.authorVieira, Susana M.
dc.contributor.authorSousa, João M. C.
dc.contributor.authorMelício, R.
dc.contributor.authorMendes, Victor
dc.date.accessioned2019-02-15T11:24:15Z
dc.date.available2019-02-15T11:24:15Z
dc.date.issued2015-08-24
dc.description.abstractThis work proposes a methodology for predicting the typical daily load profile of electricity usage based on static data obtained from surveys. The methodology intends to: (1) determine consumer segments based on the metering data using the k-means clustering algorithm, (2) correlate survey data to the segments, and (3) develop statistical and machine learning classification models to predict the demand profile of the consumers. The developed classification models contribute to make the study and planning of demand side management programs easier, provide means for studying the impact of alternative tariff setting methods and generate useful knowledge for policy makers.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationElectricity demand profile prediction based on household characteristics. In 2015 12th International Conference on the European Energy Market (EEM). Lisbon, Portugal: IEEE, 2015. ISBN 978-1-4673-6692-2. Pp. 1-5pt_PT
dc.identifier.doi10.1109/EEM.2015.7216746pt_PT
dc.identifier.isbn978-1-4673-6692-2
dc.identifier.issn2165-4093
dc.identifier.issn2165-4077
dc.identifier.urihttp://hdl.handle.net/10400.21/9506
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherInstitute of Electrical and Electronics Engineerspt_PT
dc.relation.publisherversionhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7216746pt_PT
dc.subjectData miningpt_PT
dc.subjectMachine learningpt_PT
dc.subjectSmart meter datapt_PT
dc.subjectHousehold energy consumptionpt_PT
dc.subjectSegmentationpt_PT
dc.titleElectricity demand profile prediction based on household characteristicspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlace19-22 May 2015 - Lisbon, Portugalpt_PT
oaire.citation.endPage5pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.title2015 12th International Conference on the European Energy Market (EEM)pt_PT
person.familyNameViegas
person.familyNameSousa
person.familyNameMendes
person.givenNameIvan
person.givenNameJoão M. C.
person.givenNameVictor
person.identifier134568
person.identifier.ciencia-id461F-8DE3-309C
person.identifier.ciencia-id421B-9A5B-261A
person.identifier.orcid0000-0003-2589-2212
person.identifier.orcid0000-0002-8030-4746
person.identifier.orcid0000-0002-4599-477X
person.identifier.ridF-4527-2011
person.identifier.ridD-2332-2012
person.identifier.scopus-author-id24367702800
person.identifier.scopus-author-id35547129100
person.identifier.scopus-author-id55138675600
rcaap.rightsclosedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationb926a766-4d6f-45bb-8249-2d2fd5169846
relation.isAuthorOfPublication50c9003d-124e-4176-8109-7f6329217230
relation.isAuthorOfPublicationa86b9291-f23c-4f09-83d7-9ee691696705
relation.isAuthorOfPublication.latestForDiscovery50c9003d-124e-4176-8109-7f6329217230

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
VMFMendes.pdf
Tamanho:
658.73 KB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: