Logo do repositório
 
Miniatura indisponível
Publicação

Electricity demand profile prediction based on household characteristics

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
VMFMendes.pdf658.73 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

This work proposes a methodology for predicting the typical daily load profile of electricity usage based on static data obtained from surveys. The methodology intends to: (1) determine consumer segments based on the metering data using the k-means clustering algorithm, (2) correlate survey data to the segments, and (3) develop statistical and machine learning classification models to predict the demand profile of the consumers. The developed classification models contribute to make the study and planning of demand side management programs easier, provide means for studying the impact of alternative tariff setting methods and generate useful knowledge for policy makers.

Descrição

Palavras-chave

Data mining Machine learning Smart meter data Household energy consumption Segmentation

Contexto Educativo

Citação

Electricity demand profile prediction based on household characteristics. In 2015 12th International Conference on the European Energy Market (EEM). Lisbon, Portugal: IEEE, 2015. ISBN 978-1-4673-6692-2. Pp. 1-5

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

Institute of Electrical and Electronics Engineers

Licença CC

Métricas Alternativas