Name: | Description: | Size: | Format: | |
---|---|---|---|---|
5.35 MB | Adobe PDF |
Authors
Abstract(s)
A ferrovia representa 15% do consumo de energia do sector dos transportes. Apesar da implementação de tecnologias de regeneração de energia durante a travagem, apenas uma pequena porção é utilizada, sendo a maior parte dissipada na forma de calor. A crescente utilização de veículos elétricos e a desejada mobilidade integrada, torna as estações ferroviárias numa interface de pessoas, mercadorias, mas também energético, criando a oportunidade de utilizar a energia regenerada pela ferrovia na alimentação de veículos elétricos nos parques de estacionamento adjacentes às estações. O presente trabalho tem como objetivo estudar numericamente os impactes energéticos da implementação de redes inteligentes em estações ferroviárias, que gerem a interação entre a frenagem regenerativa proveniente da ferrovia, a rede elétrica da estação e do estacionamento adjacente, integrando também um conjunto de baterias e painéis fotovoltaicos. Para isso desenvolveu-se uma ferramenta de simulação e análise de sistemas dinâmicos em Matlab Simulink, para modelar cada sistema individualmente, e posteriormente simular a sua interação tendo assim um programa modelar capaz de realizar vários casos de estudo, tendo em conta aspetos como os horários de chegada/partida de comboios, dimensão do parque de estacionamento e da estação. Utilizando a Gare do Oriente e a estação de Corroios comos casos de estudo, resultados indicam que a tração dos comboios representa a maior porção da energia consumida (cerca de 88%) o que traduz em 90MWh a 180MWh semanais dependendo da dimensão da estação sendo o restante consumo realizada pela carga de VE, e que possível obter através da frenagem regenerativa cerca de 20 MWh a 60 MWh semanais sendo possível reaproveitar 11% dessa energia utilizando SAEs.
The railway represents 15% of the energy consumption in the transportation sector. Despite the implementation of energy regeneration technologies during braking, only a small portion is utilized, with the majority being dissipated in the form of heat. The increasing use of electric vehicles and the desired integrated mobility make railway stations a hub for people, goods, and also energy, creating the opportunity to use the regenerated energy from the railway to power electric vehicles in the parking lots adjacent to the stations. The present study aims to numerically investigate the energy impacts of implementing smart grids at railway stations, which manage the interaction between regenerative braking from the railway, the station's electrical grid, and the adjacent parking area, integrating a set of batteries and photovoltaic panels. To achieve this, a simulation and analysis tool for dynamic systems was developed in Matlab Simulink to model each system individually and subsequently simulate their interaction. This allows for a versatile modeling program capable of conducting various case studies, considering aspects such as train schedules, the size of the parking lot and the station, etc. Using Gare do Oriente and Corroios station as case studies, the results indicate that train traction accounts for most of the energy consumption (about 88%), translating to 90 MWh to 180 MWh per week depending on the station's size. The remaining consumption is attributed to electric vehicle charging, and it is possible to obtain approximately 20 MWh to 60 MWh per week through regenerative braking, with the possibility of reusing 11% of that energy using energy storage systems (SAEs).
The railway represents 15% of the energy consumption in the transportation sector. Despite the implementation of energy regeneration technologies during braking, only a small portion is utilized, with the majority being dissipated in the form of heat. The increasing use of electric vehicles and the desired integrated mobility make railway stations a hub for people, goods, and also energy, creating the opportunity to use the regenerated energy from the railway to power electric vehicles in the parking lots adjacent to the stations. The present study aims to numerically investigate the energy impacts of implementing smart grids at railway stations, which manage the interaction between regenerative braking from the railway, the station's electrical grid, and the adjacent parking area, integrating a set of batteries and photovoltaic panels. To achieve this, a simulation and analysis tool for dynamic systems was developed in Matlab Simulink to model each system individually and subsequently simulate their interaction. This allows for a versatile modeling program capable of conducting various case studies, considering aspects such as train schedules, the size of the parking lot and the station, etc. Using Gare do Oriente and Corroios station as case studies, the results indicate that train traction accounts for most of the energy consumption (about 88%), translating to 90 MWh to 180 MWh per week depending on the station's size. The remaining consumption is attributed to electric vehicle charging, and it is possible to obtain approximately 20 MWh to 60 MWh per week through regenerative braking, with the possibility of reusing 11% of that energy using energy storage systems (SAEs).
Description
Dissertação para obtenção do grau de Mestre em Engenharia Mecânica
Keywords
Ferrovia Mobilidade elétrica Painéis fotovoltaicos Travagem regenerativa Redes inteligentes Sistemas de armazenamento de energia Eficiência energética Modelação numérica Railway Electric mobility Photovoltaic panels Regenerative braking Smart grids Energy storage systems Energy efficiency Numerical modeling
Citation
RICARDO, João Luis Sales - Interação de sistemas de carregamento de veículos elétricos em estações da rede ferroviária com regeneração de energia. Lisboa: Instituto Superior de Engenharia de Lisboa, 2023. Dissertação de Mestrado.