Repository logo
 
Publication

Study of fatigue crack propagation on modified CT specimens under variable amplitude loading using machine learning

authorProfile.emailbiblioteca@isel.pt
datacite.subject.fosEngenharia e Tecnologia::Engenharia Mecânica
dc.contributor.authorSantos, B.
dc.contributor.authorInfante, Virginia
dc.contributor.authorBarros, T.
dc.contributor.authorMiguel Gomes Simões Baptista, Ricardo
dc.date.accessioned2025-09-05T09:37:16Z
dc.date.available2025-09-05T09:37:16Z
dc.date.issued2024-07
dc.description.abstractThis study focuses on predicting fatigue crack paths and fatigue life in modified compact tension specimens, under mixed mode and variable amplitude loading conditions, using Machine Learning techniques. Mixed-mode conditions were induced by using specimens that incorporated holes with different radii and center coordinates. Initially, multiple Finite Element Method (FEM) simulations were conducted to determine the fatigue crack path for different configurations. Subsequently, several configurations were selected for experimental fatigue testing, in which the fatigue crack path was monitored and recorded. The final phase of the study involved Machine Learning (ML) techniques, specifically Artificial Neural Networks (ANN) and k-Nearest Neighbors (kNN), to predict fatigue crack propagation. The models were trained using different numerical and experimental data. Predicted results were then compared with experimentally tested data, and the behavior and accuracy of the models were evaluated. Overall, the implemented models demonstrated the ability to predict fatigue crack path with average deviations (ANN - 1.19 mm; kNN - 1.10 mm) closely resembling results obtained through Finite Element simulations (1.65 mm). The models were also able to predict fatigue life with average errors of 10.1 % (ANN) and 16.7 % (kNN), all achieved with a reduction of computational costs greater than 90 %.eng
dc.identifier.citationSantos, B., Infante, V., Barros, T., & Baptista, R. (2024). Study of fatigue crack propagation on modified CT specimens under variable amplitude loading using machine learning. International Journal of Fatigue, 184, 1-18. https://doi.org/10.1016/j.ijfatigue.2024.108332
dc.identifier.doihttps://doi.org/10.1016/j.ijfatigue.2024.108332
dc.identifier.eissn1879-3452
dc.identifier.issn0142-1123
dc.identifier.urihttp://hdl.handle.net/10400.21/22121
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relationAssociate Laboratory of Energy, Transports and Aeronautics
dc.relationUIDB/00151/2020
dc.relation.hasversionhttps://www.sciencedirect.com/science/article/pii/S0142112324001907?via%3Dihub
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectModified CT specimens
dc.subjectFatigue crack propagation
dc.subjectFinite element analysis
dc.subjectVariable amplitude fatigue
dc.subjectMachine learning
dc.titleStudy of fatigue crack propagation on modified CT specimens under variable amplitude loading using machine learningeng
dc.typeresearch article
dspace.entity.typePublication
oaire.awardTitleAssociate Laboratory of Energy, Transports and Aeronautics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50022%2F2020/PT
oaire.citation.endPage18
oaire.citation.startPage1
oaire.citation.titleInternational Journal of Fatigue
oaire.citation.volume184
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43
person.familyNameInfante
person.familyNameMiguel Gomes Simões Baptista
person.givenNameVirginia
person.givenNameRicardo
person.identifierN-6383-2013
person.identifier.ciencia-id201C-095A-EEDA
person.identifier.ciencia-id4B19-FC15-14D9
person.identifier.orcid0000-0003-0860-2404
person.identifier.orcid0000-0002-5955-8418
person.identifier.ridI-4785-2015
person.identifier.scopus-author-id6701458863
person.identifier.scopus-author-id7005968277
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublicationf18c64b1-72a7-4e42-ba45-e83c5e2245af
relation.isAuthorOfPublicationd16b9294-0a46-4eed-970a-9ecf1273a1bd
relation.isAuthorOfPublication.latestForDiscoveryf18c64b1-72a7-4e42-ba45-e83c5e2245af
relation.isProjectOfPublication1c76892c-cd3a-4e0f-9297-ba8cb3572b39
relation.isProjectOfPublication.latestForDiscovery1c76892c-cd3a-4e0f-9297-ba8cb3572b39

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Study_RBaptista.pdf
Size:
9.24 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: