Repository logo
 
Publication

Hyperspectral compressive sensing on low energy consumption board

dc.contributor.authorNascimento, Jose
dc.contributor.authorMartin, Gabriel
dc.date.accessioned2019-04-29T11:19:58Z
dc.date.available2019-04-29T11:19:58Z
dc.date.issued2018
dc.description.abstractHyperspectral imaging instruments allow remote Earth exploration by measuring hundreds of spectral bands (at different wavelength channels) for the same area of the Earth surface. The acquired data cube comprises several GBs per flight, which have attracted attention to onboard compression techniques. Typically these compression techniques are expensive from the computational point of view. This paper presents a compressive sensing method implementation on a low power consumption Graphic Processing Unit. The experiments are conducted on a Jetson TX1 board, which is well suited to perform vector operations such as dot products. These experiments have been performed to demonstrate the applicability, in terms of accuracy and time consuming, of these methods for onboard processing. The results show that by using this low power consumption GPU it is possible to obtain real-time performance with a very limited power requirements.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationNASCIMENTO, José M. P.; MARTIN, Gabriel – Hyperspectral compressive sensing on low energy consumption board. In IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE, 2018. ISSN 2153-6996. Pp. 5065-5068pt_PT
dc.identifier.issn2153-6996
dc.identifier.urihttp://hdl.handle.net/10400.21/9902
dc.language.isoengpt_PT
dc.publisherInstitute of Electrical and Electronics Engineerspt_PT
dc.relationSFRH/BPD/94160/2013 - FCTpt_PT
dc.subjectHyperspectral imagerypt_PT
dc.subjectCompressive sensingpt_PT
dc.subjectGPUpt_PT
dc.subjectLow-power consumptionpt_PT
dc.titleHyperspectral compressive sensing on low energy consumption boardpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F50008%2F2013/PT
oaire.citation.conferencePlaceJul 22-27, 2018 - Valencia, Spainpt_PT
oaire.citation.endPage5068pt_PT
oaire.citation.startPage5065pt_PT
oaire.citation.title38th IEEE International Geoscience and Remote Sensing Symposium (IGARSS)pt_PT
oaire.fundingStream5876
person.familyNameNascimento
person.givenNameJose
person.identifier.ciencia-id6912-6F61-1964
person.identifier.orcid0000-0002-5291-6147
person.identifier.ridE-6212-2015
person.identifier.scopus-author-id55920018000
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsclosedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationc7ffc6c0-1bdc-4f47-962a-a90dfb03073c
relation.isAuthorOfPublication.latestForDiscoveryc7ffc6c0-1bdc-4f47-962a-a90dfb03073c
relation.isProjectOfPublicatione2d2f1f5-1327-45b3-954c-2fdc843270e7
relation.isProjectOfPublication.latestForDiscoverye2d2f1f5-1327-45b3-954c-2fdc843270e7

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Hyperspectral_JMPNascimento.pdf
Size:
162.41 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: