Repository logo
 
Publication

Hyperspectral image reconstruction of heritage artwork using RGB images and deep neural networks

dc.contributor.authorChen, Ailin
dc.contributor.authorJesus, Rui
dc.contributor.authorVilarigues, M.
dc.date.accessioned2023-05-08T07:38:38Z
dc.date.available2023-05-08T07:38:38Z
dc.date.issued2022-10
dc.description.abstractThe application of our research is in the art world where the scarcity of available analytical data from a particular artist or physical access for its acquisition is restricted. This poses a fundamental problem for the purpose of conservation, restoration or authentication of historical artworks. We address part of this problem by providing a practical method to generate hyperspectral data from readily available RGB imagery of artwork by means of a two-step process using deep neural networks. The particularities of our approach include the generation of learnable colour mixtures and reflectances from a reduced collection of prior data for the mapping and reconstruction of hyperspectral features on new images. Further analysis and correction of the prediction are achieved by a second network that reduces the error by producing results akin to those obtained by a hyperspectral camera. Our method has been used to study a collection of paintings by Amadeo de Souza-Cardoso where successful results were obtained. CCS CONCEPTS • Computing methodologies → Neural networks; Artificial intelligence; • Applied computing → Arts and humanities.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationCHEN, Ailin; JESUS, Rui; VILARIGUES, Márcia – Hyperspectral image reconstruction of heritage artwork using RGB images and deep neural networks. In CBMI '22: Proceedings of the 19th International Conference on Content-based Multimedia Indexing. Graz, Austria: Association for Computing Machinary, 2022. ISBN 978-1-4503-9720-9. Pp. 97-102.pt_PT
dc.identifier.doi10.1145/3549555.3549583pt_PT
dc.identifier.isbn978-1-4503-9720-9
dc.identifier.urihttp://hdl.handle.net/10400.21/15984
dc.language.isoengpt_PT
dc.publisherAssociation for Computing Machinarypt_PT
dc.relationNOVA Laboratory for Computer Science and Informatics
dc.relationGlass and Ceramic for the Arts
dc.relationImage and materials of Amadeo de Souza-Cardoso for an AI authentication tool
dc.relation.publisherversionhttps://dl.acm.org/doi/pdf/10.1145/3549555.3549583pt_PT
dc.subjectNeural networkspt_PT
dc.subjectHyperspectral imagingpt_PT
dc.subjectImage visualisationpt_PT
dc.subjectColour analysispt_PT
dc.titleHyperspectral image reconstruction of heritage artwork using RGB images and deep neural networkspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleNOVA Laboratory for Computer Science and Informatics
oaire.awardTitleGlass and Ceramic for the Arts
oaire.awardTitleImage and materials of Amadeo de Souza-Cardoso for an AI authentication tool
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04516%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00729%2F2020/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//PD%2FBD%2F135223%2F2017/PT
oaire.citation.conferencePlaceSeptember 14–16, 2022 - Graz, Austriapt_PT
oaire.citation.endPage102pt_PT
oaire.citation.startPage97pt_PT
oaire.citation.titleCBMI '22: Proceedings of the 19th International Conference on Content-based Multimedia Indexingpt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStream6817 - DCRRNI ID
person.familyNameJesus
person.familyNameVilarigues
person.givenNameRui
person.givenNameMárcia
person.identifier2682439
person.identifier.ciencia-id041D-93A6-7412
person.identifier.ciencia-idB417-B4B6-E982
person.identifier.orcid0000-0003-1869-6491
person.identifier.orcid0000-0003-4134-2819
person.identifier.scopus-author-id23012170100
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationcfde72fc-2907-42d5-9b1e-93ddde41c3bd
relation.isAuthorOfPublication38b84d42-86f5-409d-b4af-63558a08952d
relation.isAuthorOfPublication.latestForDiscovery38b84d42-86f5-409d-b4af-63558a08952d
relation.isProjectOfPublicationeb60f8bf-ea5b-4384-ad42-7fc5c1fdeec5
relation.isProjectOfPublication1cd2b9f7-f4ed-4f6a-b9e6-56aa6cf566d6
relation.isProjectOfPublicationd8b73622-f923-4147-a72e-c5fa1306b132
relation.isProjectOfPublication.latestForDiscoveryeb60f8bf-ea5b-4384-ad42-7fc5c1fdeec5

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Hyperspectral_RJesus.pdf
Size:
1.76 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: