Publication
Predicting Critically Ill Patients Outcome in the ICU usinh UHPLC-HRMS data
dc.contributor.author | Calado, Cecília | |
dc.contributor.author | Fonseca, T.A.H. | |
dc.contributor.author | Rekowski, C.P. Von | |
dc.contributor.author | Araújo, R. | |
dc.contributor.author | Oliveira, M. Conceição | |
dc.contributor.author | Bento, L. | |
dc.contributor.author | Justino, G.C. | |
dc.date.accessioned | 2024-03-21T17:53:34Z | |
dc.date.available | 2024-03-21T17:53:34Z | |
dc.date.issued | 2024 | |
dc.description.abstract | The available scores to predict patients’ outcomes in specific settings generally present low sensitivities and specificities when applied to intensive care units’ (ICUs) populations. Advancements in analytical techniques, notably Ultra-High Performance Liquid Chromatography- Mass Spectrometry (UHPLC HRMS) transformed biomarker identification, enabling a comprehensive profiling of biofluids, including serum. In the current work, untargeted metabolomics, utilizing UHPLC-HRMS serum analysis, was performed on 16 ICU patients, categorized as either discharged (n=8), or deceased (n=8) in average seven days post sample collection. Linear discriminant analysis (LDA) or principal component analysis (PCA)-LDA models involving different metabolite sets were developed, enabling to predict patients’ outcomes in the ICU with 92% accuracy and 83% sensitivity on validation datasets. These results highlight the advantages of UHPLC-HRMS as a platform capable of providing a set of clinically significant biomarkers to predict patients’ outcome. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | https://doi.org/10.17758/EIRAI20 | pt_PT |
dc.identifier.isbn | 978-989-9121-36-2 | |
dc.identifier.uri | http://hdl.handle.net/10400.21/17197 | |
dc.publisher | International Forum of Engineers & Practitioners | pt_PT |
dc.relation | The dynamics of biomarkers as a predictive factor in the morbidity and mortality of critically ill patients. | |
dc.relation | Diagnosis and prognosis disease biomarkers on critically ill patients with COVID towards a precision medicine – a machine learning approach | |
dc.subject | Biomarkers | pt_PT |
dc.subject | Intensive care unit | pt_PT |
dc.subject | Predictive models | pt_PT |
dc.subject | Metabolomics | pt_PT |
dc.subject | Mass Spectrometry | pt_PT |
dc.title | Predicting Critically Ill Patients Outcome in the ICU usinh UHPLC-HRMS data | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | The dynamics of biomarkers as a predictive factor in the morbidity and mortality of critically ill patients. | |
oaire.awardTitle | Diagnosis and prognosis disease biomarkers on critically ill patients with COVID towards a precision medicine – a machine learning approach | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/3599-PPCDT/DSAIPA%2FDS%2F0117%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT//2023.01951.BD/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/OE/2021.05553.BD/PT | |
oaire.citation.conferencePlace | Portugal | pt_PT |
oaire.citation.endPage | 6 | pt_PT |
oaire.citation.startPage | 1 | pt_PT |
oaire.citation.title | 3rd International Conference on Challenges in Engineering, Medical, Economics and Education: Research & Solutions (CEMEERS-24a) | pt_PT |
oaire.fundingStream | 3599-PPCDT | |
oaire.fundingStream | OE | |
person.familyName | Calado | |
person.givenName | Cecília | |
person.identifier | 130332 | |
person.identifier.ciencia-id | 9418-E320-3177 | |
person.identifier.orcid | 0000-0002-5264-9755 | |
person.identifier.rid | E-2102-2014 | |
person.identifier.scopus-author-id | 6603163260 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | e8577257-c64c-4481-9b2b-940fedb360cc | |
relation.isAuthorOfPublication.latestForDiscovery | e8577257-c64c-4481-9b2b-940fedb360cc | |
relation.isProjectOfPublication | 8f80f51c-b563-49e2-9864-a2c78479fc19 | |
relation.isProjectOfPublication | 0e941509-e437-436e-9e84-2618ba108bfd | |
relation.isProjectOfPublication | 51024b90-ad1f-4f0c-992a-452dca1a340b | |
relation.isProjectOfPublication.latestForDiscovery | 8f80f51c-b563-49e2-9864-a2c78479fc19 |