Repository logo
 
Publication

Parallel hyperspectral compressive sensing method on GPU

dc.contributor.authorBernabe, Sergio
dc.contributor.authorMartin, Gabriel
dc.contributor.authorNascimento, Jose
dc.date.accessioned2016-04-26T11:30:21Z
dc.date.available2016-04-26T11:30:21Z
dc.date.issued2015
dc.description.abstractRemote hyperspectral sensors collect large amounts of data per flight usually with low spatial resolution. It is known that the bandwidth connection between the satellite/airborne platform and the ground station is reduced, thus a compression onboard method is desirable to reduce the amount of data to be transmitted. This paper presents a parallel implementation of an compressive sensing method, called parallel hyperspectral coded aperture (P-HYCA), for graphics processing units (GPU) using the compute unified device architecture (CUDA). This method takes into account two main properties of hyperspectral dataset, namely the high correlation existing among the spectral bands and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. Experimental results conducted using synthetic and real hyperspectral datasets on two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN, reveal that the use of GPUs can provide real-time compressive sensing performance. The achieved speedup is up to 20 times when compared with the processing time of HYCA running on one core of the Intel i7-2600 CPU (3.4GHz), with 16 Gbyte memory.pt_PT
dc.identifier.citationBERNABE, Sergio; [et al] - Parallel hyperspectral compressive sensing method on GPU. In Conference on High-Performance Computing in Remote Sensing V. Toulouse, France: SPIE, 2015. ISSN 0277-786X. Vol. 9646, pp. 96460P-1-96460P-8pt_PT
dc.identifier.isbn978-1-62841-856-9
dc.identifier.issn0277-786X
dc.identifier.urihttp://hdl.handle.net/10400.21/6089
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSPIE-Institute Societe Optical Engineeringpt_PT
dc.relationNEW HYPERSPECTRAL COMPRESSIVE SENSING AND UNMIXING FRAMEWORK.
dc.relation.ispartofseriesProceedings of SPIE;96460P
dc.subjectHyperspectral compressive sensingpt_PT
dc.subjectHigh performance computingpt_PT
dc.subjectGraphics Processing Unitspt_PT
dc.subjectGPUpt_PT
dc.titleParallel hyperspectral compressive sensing method on GPUpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleNEW HYPERSPECTRAL COMPRESSIVE SENSING AND UNMIXING FRAMEWORK.
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F50008%2F2013/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//SFRH%2FBPD%2F94160%2F2013/PT
oaire.citation.conferencePlaceToulouse, Francept_PT
oaire.citation.endPage96460P-8
oaire.citation.startPage96460P-1
oaire.citation.titleConference on High-Performance Computing in Remote Sensing Vpt_PT
oaire.citation.volume9646pt_PT
oaire.fundingStream5876
person.familyNameNascimento
person.givenNameJose
person.identifier.ciencia-id6912-6F61-1964
person.identifier.orcid0000-0002-5291-6147
person.identifier.ridE-6212-2015
person.identifier.scopus-author-id55920018000
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsclosedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationc7ffc6c0-1bdc-4f47-962a-a90dfb03073c
relation.isAuthorOfPublication.latestForDiscoveryc7ffc6c0-1bdc-4f47-962a-a90dfb03073c
relation.isProjectOfPublicatione2d2f1f5-1327-45b3-954c-2fdc843270e7
relation.isProjectOfPublicatione24a884a-f234-45c7-92b5-4df02ccdce9e
relation.isProjectOfPublication.latestForDiscoverye24a884a-f234-45c7-92b5-4df02ccdce9e

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Parallel hyperspectral compressive sensing method on GPU.pdf
Size:
280.57 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: