Logo do repositório
 
Miniatura indisponível
Publicação

Hyperspectral signal subspace estimation

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
Hyperspectral signal subspace estimation.pdf256.08 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Given an hyperspectral image, the determination of the number of endmembers and the subspace where they live without any prior knowledge is crucial to the success of hyperspectral image analysis. This paper introduces a new minimum mean squared error based approach to infer the signal subspace in hyperspectral imagery. The method, termed hyperspectral signal identification by minimum error (HySime), is eigendecomposition based and it does not depend on any tuning parameters. It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.

Descrição

Palavras-chave

Hyperspectral signal Model

Contexto Educativo

Citação

NASCIMENTO, José M. P.; BIOUCAS-DIAS, José M. - Hyperspectral signal subspace estimation. IGARSS: 2007 IEEE International Geoscience and Remote Sensing Symposium, Vols 1-12: Sensing And Understanding Our Planet. ISSN 2153-6996. Vol. 1-12. 3225-3228, 2007

Projetos de investigação

Projeto de investigaçãoVer mais

Unidades organizacionais

Fascículo

Editora

IEEE - Institute of Electrical and Electronics Engineers Inc.

Licença CC

Métricas Alternativas