Loading...
Research Project
Oil Slick Surveillance Using ASAR and MERIS Data
Funder
Authors
Publications
Unsupervised hyperspectral signal subspace identification
Publication . Nascimento, Jose; Bioucas-Dias, José M.
Hyperspectral imaging sensors provide image data containing both spectral and spatial information from the Earth surface. The huge data volumes produced by these sensors put stringent requirements on communications, storage, and processing.
This paper presents a method, termed hyperspectral signal subspace identification by minimum error (HySime), that infer the signal subspace and determines its dimensionality without any prior knowledge. The identification of this subspace enables a correct dimensionality reduction yielding gains in algorithm performance and complexity and in data storage. HySime method is unsupervised and fully-automatic, i.e., it does not depend on any tuning parameters. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.
Separação de dados hiperespectrais baseada na análise de vértices de um simplex
Publication . Nascimento, Jose; Bioucas-Dias, José M.
Os sensores hiperespectrais que estão a ser desenvolvidos para aplicações em detecção remota, produzem uma elevada quantidade de dados. Tal quantidade de dados obriga a que as ferramentas de análise e processamento sejam eficientes e tenham baixa complexidade computacional.
Uma tarefa importante na detecção remota é a determinação das substâncias presentes numa imagem hiperespectral e quais as suas concentrações. Neste contexto, Vertex component analysis (VCA), é um método não-supervisionado recentemente proposto que é eficiente e tem a complexidade computacional mais baixa de todos os métodos conhecidos. Este método baseia-se no facto de os vértices do simplex corresponderem às assinaturas dos elementos presentes nos dados. O VCA projecta os dados em direcções ortogonais ao subespaço gerado pelas assinaturas das substâncias já encontradas, correspondendo o extremo desta projecção à assinatura da nova substância encontrada.
Nesta comunicação apresentam-se várias optimizações ao VCA nomeadamente: 1) a introdução de um método de inferência do sub-espaço de sinal que permite para além de reduzir a dimensionalidade dos dados, também permite estimar o número de substâncias presentes. 2) projeção dos dados é executada em várias direcções para garantir maior robustez em situações de baixa relação sinal-ruído. As potencialidades desta técnica são ilustradas num conjunto de experiências com dados simulados e reais, estes últimos adquiridos pela plataforma AVIRIS.
Hyperspectral signal subspace estimation
Publication . Nascimento, Jose; Bioucas-Dias, José M.
Given an hyperspectral image, the determination of the number of endmembers and the subspace where they live without any prior knowledge is crucial to the success of hyperspectral image analysis.
This paper introduces a new minimum mean squared error based approach to infer the signal subspace in hyperspectral imagery. The method, termed hyperspectral signal identification by minimum error (HySime), is eigendecomposition based and it does not depend on any tuning parameters. It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.
Blind hyperspectral unmixing
Publication . Nascimento, Jose; Bioucas-Dias, José M.
This paper introduces a new hyperspectral unmixing method called Dependent Component Analysis (DECA). This method decomposes a hyperspectral image into a collection of reflectance (or radiance) spectra of the materials present in the scene (endmember signatures) and the corresponding abundance fractions at each pixel.
DECA models the abundance fractions as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. This method overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical based approaches. DECA performance is illustrated using simulated and real data.
Blind hyperspectral unmixing
Publication . Nascimento, Jose; Bioucas-Dias, José M.
Hyperspectral unmixing methods aim at the decomposition of a hyperspectral image into a collection endmember
signatures, i.e., the radiance or reflectance of the materials present in the scene, and the correspondent abundance
fractions at each pixel in the image.
This paper introduces a new unmixing method termed dependent component analysis (DECA). This method
is blind and fully automatic and it overcomes the limitations of unmixing methods based on Independent Component
Analysis (ICA) and on geometrical based approaches.
DECA is based on the linear mixture model, i.e., each pixel is a linear mixture of the endmembers signatures
weighted by the correspondent abundance fractions. These abundances are modeled as mixtures of Dirichlet
densities, thus enforcing the non-negativity and constant sum constraints, imposed by the acquisition process.
The endmembers signatures are inferred by a generalized expectation-maximization (GEM) type algorithm. The
paper illustrates the effectiveness of DECA on synthetic and real hyperspectral images.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
PDCTE
Funding Award Number
PDCTE/CPS/49967/2003