Repository logo
 
Publication

Deep learning soft-decision GNSS multipath detection and mitigation

authorProfile.emailbiblioteca@isel.pt
datacite.subject.fosEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
dc.contributor.authorNunes, Fernando
dc.contributor.authorSousa, Fernando
dc.date.accessioned2025-09-11T11:02:35Z
dc.date.available2025-09-11T11:02:35Z
dc.date.issued2024-07-18
dc.description.abstractA technique is proposed to detect the presence of the multipath effect in Global Navigation Satellite Signal (GNSS) signals using a convolutional neural network (CNN) as the building block. The network is trained and validated, for a wide range of 𝐶/𝑁0 values, with a realistic dataset constituted by the synthetic noisy outputs of a 2D grid of correlators associated with different Doppler frequencies and code delays (time-domain dataset). Multipath-disturbed signals are generated in agreement with the various scenarios encompassed by the adopted multipath model. It was found that pre-processing the outputs of the correlators grid with the two-dimensional Discrete Fourier Transform (frequency-domain dataset) enables the CNN to improve the accuracy relative to the time-domain dataset. Depending on the kind of CNN outputs, two strategies can then be devised to solve the equation of navigation: either remove the disturbed signal from the equation (hard decision) or process the pseudoranges with a weighted least-squares algorithm, where the entries of the weighting matrix are computed using the analog outputs of the neural network (soft decision).eng
dc.identifier.citationNunes, F., & Sousa, F. (2024). Deep learning soft-decision GNSS multipath detection and mitigation. Sensors, 24(14), 1-20. https://doi.org/10.3390/s24144663
dc.identifier.doihttps://doi.org/10.3390/s24144663
dc.identifier.eissn1424-8220
dc.identifier.urihttp://hdl.handle.net/10400.21/22131
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.relationInstituto de Telecomunicações
dc.relation.hasversionhttps://www.mdpi.com/1424-8220/24/14/4663
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMultipath detection
dc.subjectMultipath mitigation
dc.subjectDeep learning
dc.subjectConvolutional neural network
dc.subjectMultilayer perceptron
dc.titleDeep learning soft-decision GNSS multipath detection and mitigationeng
dc.typeresearch article
dspace.entity.typePublication
oaire.awardTitleInstituto de Telecomunicações
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50008%2F2020/PT
oaire.citation.endPage20
oaire.citation.issue14
oaire.citation.startPage1
oaire.citation.titleSensors
oaire.citation.volume24
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43
person.familyNameNunes
person.familyNameSousa
person.givenNameFernando
person.givenNameFernando
person.identifier.orcid0000-0001-6573-4492
person.identifier.orcid0000-0003-2520-7553
person.identifier.ridR-2624-2016
person.identifier.scopus-author-id7005110259
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublication42afe5b2-2807-459c-8abb-f6d8c08e589c
relation.isAuthorOfPublicationfca8aa4a-079f-41c1-9d52-098212a59b44
relation.isAuthorOfPublication.latestForDiscovery42afe5b2-2807-459c-8abb-f6d8c08e589c
relation.isProjectOfPublication75f6c6d9-5365-4d88-a66f-00492a6ffb5a
relation.isProjectOfPublication.latestForDiscovery75f6c6d9-5365-4d88-a66f-00492a6ffb5a

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deep learning_FSousa.pdf
Size:
559.73 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: