Repository logo
 
Publication

Driver drowsiness detection: a comparison between intrusive and non-intrusive signal acquisition methods

dc.contributor.authorOliveira, Licínio
dc.contributor.authorCardoso, Jaime
dc.contributor.authorLourenço, André
dc.contributor.authorAhlstrom, Christer
dc.date.accessioned2019-04-16T10:10:24Z
dc.date.available2019-04-16T10:10:24Z
dc.date.issued2018
dc.description.abstractDriver drowsiness is a major cause of road accidents, many of which result in fatalities. A solution to this problem is the inclusion of a drowsiness detector in vehicles to alert the driver if sleepiness is detected. To detect drowsiness, physiologic, behavioral (visual) and vehicle-based methods can be used, however, only measures that can be acquired non-intrusively are viable in a real life application. This work uses data from a real-road experiment with sleep deprived drivers to compare the performance of driver drowsiness detection using intrusive acquisition methods, namely electrooculogram (EOG), with camera based, non-intrusive, methods. A hybrid strategy, combining the described methods with electrocardiogram (ECG) measures, is also evaluated. Overall, the obtained results show that drowsiness detection performance is similar using non-intrusive camera based measures or intrusive EOG measures. The detection performance increases when combining two methods (ECG + visual) or (ECG + EOG).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationOLIVEIRA, Licínio; [et al] – Driver drowsiness detection: a comparison between intrusive and non-intrusive signal acquisition methods. In Proceedings of the 2018 7th European Workshop on Visual Information Processing (EUVIP). Tampere, Finland: IEEE, 2018. ISSN 2164-974X. Pp. 1-6pt_PT
dc.identifier.issn2164-974X
dc.identifier.issn2471-8963
dc.identifier.urihttp://hdl.handle.net/10400.21/9870
dc.language.isoengpt_PT
dc.publisherInstitute of Electrical and Electronics Engineerspt_PT
dc.relationPOCI-01-0145-FEDER-030707 - FCTpt_PT
dc.relation688900 - European Unions Horizon 2020 research and innovation programpt_PT
dc.subjectDriver drowsinesspt_PT
dc.subjectCamera-based methodspt_PT
dc.subjectECGpt_PT
dc.subjectEOGpt_PT
dc.titleDriver drowsiness detection: a comparison between intrusive and non-intrusive signal acquisition methodspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceNov 26-28, 2018 - Tampere, Finlandpt_PT
oaire.citation.endPage6pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.title7th European Workshop on Visual Information Processing (EUVIP)pt_PT
person.familyNameCardoso
person.familyNameLourenço
person.givenNameJaime
person.givenNameAndré
person.identifierR-000-6H2
person.identifier.ciencia-id6017-2B87-B242
person.identifier.orcid0000-0002-3760-2473
person.identifier.orcid0000-0001-8935-9578
person.identifier.ridI-3286-2013
person.identifier.scopus-author-id9245302400
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicatione2f2c998-9a12-4af9-ad3a-fe57c4f7d951
relation.isAuthorOfPublicationcbc6b0dc-187b-4f88-a8b3-52b4721df057
relation.isAuthorOfPublication.latestForDiscoverycbc6b0dc-187b-4f88-a8b3-52b4721df057

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Driver_ALourenco.pdf
Size:
388.22 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: