Name: | Description: | Size: | Format: | |
---|---|---|---|---|
7.71 MB | Adobe PDF |
Authors
Abstract(s)
A indústria de produção de biodiesel tem vindo a adquirir uma importância crescente, desempenhando um papel fundamental na mitigação das actuais crises energética e ambiental. No entanto, apesar desta indústria se encontrar em claro crescimento, existe uma necessidade continua de optimização processual, de forma a aumentar a competitividade económica do processo de produção do biodiesel. Com esta finalidade, foi elaborada a presente dissertação no âmbito de um estágio industrial, na sequência de um protocolo estabelecido entre o ISEL e a empresa Prio Bio S.A., detentora de uma unidade de produção de biodiesel situada na Gafanha da Nazaré. O trabalho teve como objectivo a análise e optimização do funcionamento da secção de transesterificação. Esta apresenta elevada relevância, constituindo-se como o processo central da fábrica, cujo funcionamento impacta drasticamente o rendimento e eficiência da unidade de produção de biodiesel. Numa análise preliminar ao processo, foram efectuados balanços mássicos à secção de transesterificação em condições reais de funcionamento, aprofundando o conhecimento sobre o funcionamento dos equipamentos. Desta análise resultou um diagrama de processo e fluxos. Foram aplicadas técnicas integrantes da pipeline de machine learning aos valores registados na base de dados processuais no âmbito da análise e tratamento de dados referentes às condições operacionais da unidade. Foi constituída uma matriz correlacional entre variáveis do processo, denotando as principais correlações entre pares de variáveis processuais.Para as variáveis com um índice de correlação mais acentuado face à conversão de glicerídeos nos reactores, foi elaborado um estudo extensivo utilizando gráficos de contornos. Esta análise permitiu o estabelecimento de gamas óptimas de funcionamento relativas: i) à maximização da conversão de glicerídeos, e ii) minimização da utilização de catalisador e álcool. Foram também desenvolvidos sensores inferenciais, assentes num modelo de redes neuronais, permitindo a previsão da conversão nos reactores de transesterificação, antecipando problemas de funcionamento e admitindo tomar medidas correctivas. Por m, foi desenvolvido um conjunto de dashboards denotando os indicadores de desempenho processual chave identi- cados, constituindo uma ferramenta de auxílio à tomada de decisão e actuação sobre o processo. Alguns destes dashboards já se encontram implementados, estando os restantes em fase de implementação.
The biodiesel production industry is becoming increasingly important, playing a key role in mitigating the current energy and environmental crises. However, although this industry is clearly growing, there is a continuous need for process optimisation in order to increase the economic competitiveness of the biodiesel production process. With this purpose, this dissertation was developed in the scope of an industrial internship, following a protocol established between ISEL and the company Prio Bio S.A., owner of a biodiesel production unit located in Gafanha da Nazaré. The study had the objective of analysing and optimising the operation of the transesteri cation section. This section is of high relevance, being the central process of the plant, whose functioning drastically impacts the yield and e ciency of the biodiesel production unit. In a preliminary analysis of the process, mass balances were carried out in the transesterification section under real operating conditions, deepening the knowledge on the functioning of the equipment. From this analysis resulted a process and flow diagram. Techniques integrating the machine learning pipeline were applied to the values recorded in the procedural database as part of the analysis and processing of data relating to the operational conditions of the unit. A correlational matrix between process variables was constituted, denoting the main correlations between pairs of process variables. For the variables with a higher correlation index against glyceride conversion in the reactors, an extensive study was carried out using contour plots. This analysis allowed the establishment of optimal operating ranges concerning: i) maximisation of glycerides to esters conversion, and ii) minimisation of catalyst and alcohol usage. Software sensors were also developed, based on a neural network model, allowing the prediction of conversion in transesterification reactors, anticipating operating problems and allowing corrective measures to be taken. Finally, a set of dashboards was developed, showing the key process performance indicators identified, constituting an aid tool for decision-making and action on the process. Some of these dashboards have already been implemented and the others are in the implementation phase.
The biodiesel production industry is becoming increasingly important, playing a key role in mitigating the current energy and environmental crises. However, although this industry is clearly growing, there is a continuous need for process optimisation in order to increase the economic competitiveness of the biodiesel production process. With this purpose, this dissertation was developed in the scope of an industrial internship, following a protocol established between ISEL and the company Prio Bio S.A., owner of a biodiesel production unit located in Gafanha da Nazaré. The study had the objective of analysing and optimising the operation of the transesteri cation section. This section is of high relevance, being the central process of the plant, whose functioning drastically impacts the yield and e ciency of the biodiesel production unit. In a preliminary analysis of the process, mass balances were carried out in the transesterification section under real operating conditions, deepening the knowledge on the functioning of the equipment. From this analysis resulted a process and flow diagram. Techniques integrating the machine learning pipeline were applied to the values recorded in the procedural database as part of the analysis and processing of data relating to the operational conditions of the unit. A correlational matrix between process variables was constituted, denoting the main correlations between pairs of process variables. For the variables with a higher correlation index against glyceride conversion in the reactors, an extensive study was carried out using contour plots. This analysis allowed the establishment of optimal operating ranges concerning: i) maximisation of glycerides to esters conversion, and ii) minimisation of catalyst and alcohol usage. Software sensors were also developed, based on a neural network model, allowing the prediction of conversion in transesterification reactors, anticipating operating problems and allowing corrective measures to be taken. Finally, a set of dashboards was developed, showing the key process performance indicators identified, constituting an aid tool for decision-making and action on the process. Some of these dashboards have already been implemented and the others are in the implementation phase.
Description
Trabalho de dissertação para obtenção do grau de mestre em Engenharia Química e Biológica
Keywords
Biodiesel Transesterificação Machine learning Sensores inferênciais Redes neuronais Dashboards Transesterification Software sensors Neural networks
Citation
PEREIRA, Bruno Miguel Ferreira – Estudo à Secção de Transesterificação na produção biodiesel. Lisboa: Instituto Superior de Engenharia de Lisboa, 2022. Dissertação de Mestrado.
Publisher
Instituto Superior de Engenharia de Lisboa