Logo do repositório
 
Miniatura indisponível
Publicação

Towards Explainable Machine Learning for Bank Churn Prediction Using Data Balancing and Ensemble-Based Methods

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
mathematics-10-02379-v2.pdf1.03 MBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

The diversity of data collected on both social networks and digital interfaces is extremely increased, raising the problem of heterogeneous variables that are not often favourable to classification algorithms. Despite the significant improvement in machine learning (ML) and predictive analysis efficiency for classification in customer relationship management systems (CRM), their performance remains very limited by heterogeneous data processing, class imbalance, and feature scales. This impact turned out to be more important for simple ML methods which in addition often suffer from over-fitting. This paper proposes a succinct and detailed ML model building process including cross-validation of the combination of SMOTE to balance data and ensemble methods for modelling. From the conducted experiments, the random forest (RF) model yielded the best performance of 0.86 in terms of accuracy and f1-scoreusing balanced data. It confirms the literature summary about this topic which shows that RF was among the most effective algorithms for customer predictive classification issues. The constructed and optimized models were interpreted by Shapley values and feature importance analysis which shows that the “age” feature was the most significant while “HasCrCard” was the less one. This process has proven effective in bridging previously reported research gaps and the resulting model should be used for supporting bank customer loyalty decision-making.

Descrição

Artigo publicado em revista científica internacional

Palavras-chave

SMOTE Heterogeneous data Imbalance data Machine learning Shapley values Ensemble methods Bank churn modelling Feature importance

Contexto Educativo

Citação

Tékouabou, S. C. K., Gherghina, Ștefan C., Toulni, H., Mata, P., & Martins, J. M. (2022). Towards Explainable Machine Learning for Bank Churn Prediction Using Data Balancing and Ensemble-Based Methods. Mathematics, 10(14), 2379. https://doi.org/10.3390/math10142379

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

MDPI

Coleções

Licença CC

Métricas Alternativas