Repository logo
 
No Thumbnail Available
Publication

Synthesis and Rh(I)‐catalyzed polymerization of 1,3‐diphenylyne–calix[4]arene compounds: novel conjugated, calixarene‐based polymers

Use this identifier to reference this record.
Name:Description:Size:Format: 
Synthesis_JVPrata.pdf442.02 KBAdobe PDF Download

Advisor(s)

Abstract(s)

The synthesis of two 1,3‐bis(4‐ethynylbenzyloxy)calix[4]arenes, 5,11,17,23‐tetrakis(1,1‐dimethylethyl)‐25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene (1 ) and 25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene (2 ), was accomplished through Sonogashira coupling of appropriate calixarene derivatives. Methods for the polymerization of these bifunctional building blocks with Rh(I) as a catalyst, leading ultimately to conjugated polymers having calix[4]arene units incorporated into the main chain, were explored. Calixarenes 1 and 2 were efficiently polymerized with rhodium‐based initiators and afforded the conjugated polymers poly{5,11,17,23‐tetrakis(1,1‐dimethylethyl)‐25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene} (poly 1 ) and poly{25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene}. Depending on the conditions, high conversions and good yields were obtained. The effects of adding cocatalysts (NHEt2 and/or PPh3) were studied in connection with the number‐average molecular weight and the molecular weight distribution of the resultant polymer (poly 1 ) and tentatively correlated with the formation of low‐molecular‐weight materials. A catalytic system containing triphenylphosphine as the sole additive ([Rh(nbd)Cl]2; [Rh]/[PPh3] = 0.5) proved to be the best for the polymerization of p ‐tert ‐butylcalixarene compound 1 . Linear polymers having high number‐average molecular weights (up to 1.1 × 105 g mol−1) with low polydispersities were produced under these conditions. For debutylated homologue 2 , its polymerization was best carried out in the absence of any added cocatalyst. A cyclopolymerization route, comprising the intramolecular ring closing of the calix[4]arene pendant ethynyl groups followed by an intermolecular propagation step, is advanced to explain the results.

Description

Keywords

Calixarene Catalysis Conjugated polymers Cyclopolymerization Rhodium Sonogashira coupling

Pedagogical Context

Citation

COSTA, Alexandra I.; PRATA, José V. – Synthesis and Rh(I)‐catalyzed polymerization of 1,3‐diphenylyne–calix[4]arene compounds: novel conjugated, calixarene‐based polymers. Journal of Polymer Science Part A: Polymer Chemistry. ISSN 0887-624X. Vol. 44, N.º 24 (2006), pp. 7054-7070

Research Projects

Organizational Units

Journal Issue

Publisher

Wiley

CC License

Altmetrics