Repository logo
 
Publication

Clustering and selecting categorical features

dc.contributor.authorSilvestre, Cláudia
dc.contributor.authorCardoso, Margarida
dc.contributor.authorFigueiredo, Mário
dc.date.accessioned2014-12-12T16:18:22Z
dc.date.available2014-12-12T16:18:22Z
dc.date.issued2013-09
dc.description.abstractIn data clustering, the problem of selecting the subset of most relevant features from the data has been an active research topic. Feature selection for clustering is a challenging task due to the absence of class labels for guiding the search for relevant features. Most methods proposed for this goal are focused on numerical data. In this work, we propose an approach for clustering and selecting categorical features simultaneously. We assume that the data originate from a finite mixture of multinomial distributions and implement an integrated expectation-maximization (EM) algorithm that estimates all the parameters of the model and selects the subset of relevant features simultaneously. The results obtained on synthetic data illustrate the performance of the proposed approach. An application to real data, referred to official statistics, shows its usefulness.en
dc.identifier.citationSilvestre, Cláudia; Cardoso, Margarida; Figueiredo, Mário - Clustering and Selecting Categorical Features. In Progress in Artificial Intelligence: Lecture Notes in Computer Science: XVI PORTUGUESE CONFERENCE ON ARTIFICIAL INTELLIGENCE – EPIA 2013, Angra do Heroísmo, (Açores), 09-12 Septemnber 2013, (Volume 8154, 2013, pp 331-342)por
dc.identifier.doi10.1007/978-3-642-40669-0_29
dc.identifier.urihttp://hdl.handle.net/10400.21/4052
dc.language.isoporpor
dc.peerreviewedyespor
dc.publisherSpringerpor
dc.relation.publisherversionhttp://link.springer.com/chapter/10.1007%2F978-3-642-40669-0_29por
dc.subjectCluster analysisen
dc.subjectFinite mixture modelsen
dc.subjectEM-MML algorithmen
dc.subjectFeature selectionen
dc.subjectCategorical featuresen
dc.titleClustering and selecting categorical featurespor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceAngra do Heroísmo, (Açores)por
oaire.citation.endPage342por
oaire.citation.startPage331por
oaire.citation.titleXVI Portuguese Conference on Artificial Intelligence – EPIA 2013por
oaire.citation.volume8154por
person.familyNameSilvestre
person.givenNameCláudia
person.identifier.ciencia-idDA12-EF3F-C7CD
person.identifier.orcid0000-0002-8850-4304
rcaap.rightsrestrictedAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublication08fbc1bf-3387-4137-8c03-c4664dd43375
relation.isAuthorOfPublication.latestForDiscovery08fbc1bf-3387-4137-8c03-c4664dd43375

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
RESUMO_Epia2013.doc
Size:
31.5 KB
Format:
Microsoft Word
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: