Repository logo
 
Publication

GPU implementation of the simplex identification via split augmented Lagrangian

dc.contributor.authorSevilla, Jorge
dc.contributor.authorNascimento, Jose
dc.date.accessioned2016-04-26T11:14:43Z
dc.date.available2016-04-26T11:14:43Z
dc.date.issued2015
dc.description.abstractHyperspectral imaging can be used for object detection and for discriminating between different objects based on their spectral characteristics. One of the main problems of hyperspectral data analysis is the presence of mixed pixels, due to the low spatial resolution of such images. This means that several spectrally pure signatures (endmembers) are combined into the same mixed pixel. Linear spectral unmixing follows an unsupervised approach which aims at inferring pure spectral signatures and their material fractions at each pixel of the scene. The huge data volumes acquired by such sensors put stringent requirements on processing and unmixing methods. This paper proposes an efficient implementation of a unsupervised linear unmixing method on GPUs using CUDA. The method finds the smallest simplex by solving a sequence of nonsmooth convex subproblems using variable splitting to obtain a constraint formulation, and then applying an augmented Lagrangian technique. The parallel implementation of SISAL presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory. The results herein presented indicate that the GPU implementation can significantly accelerate the method's execution over big datasets while maintaining the methods accuracy.pt_PT
dc.identifier.citationSEVILLA, Jorge; NASCIMENTO, José - GPU implementation of the simplex identification via split augmented Lagrangian. High-Performance Computing in Remote Sensing V. ISSN 0277-786X. 2015pt_PT
dc.identifier.doi10.1117/12.2194519pt_PT
dc.identifier.isbn978-1-62841-856-9
dc.identifier.issn0277-786X
dc.identifier.urihttp://hdl.handle.net/10400.21/6087
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSPIE-International Societe Optical Engineeringpt_PT
dc.relationBeyond Convexity: Non-Convex Optimization and Game-Theoretic Approaches for Imaging Inverse Problems
dc.relationNEW HYPERSPECTRAL COMPRESSIVE SENSING AND UNMIXING FRAMEWORK.
dc.relation.ispartofseriesProceedings of SPIE;964607
dc.subjectHyperspectral endmember extractionpt_PT
dc.subjectSimplex Identification via Split Augmented Lagrangianpt_PT
dc.subjectSISALpt_PT
dc.subjectGraphics Processing Unitspt_PT
dc.subjectGPUpt_PT
dc.subjectOnboard processingpt_PT
dc.titleGPU implementation of the simplex identification via split augmented Lagrangianpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleBeyond Convexity: Non-Convex Optimization and Game-Theoretic Approaches for Imaging Inverse Problems
oaire.awardTitleNEW HYPERSPECTRAL COMPRESSIVE SENSING AND UNMIXING FRAMEWORK.
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F50008%2F2013/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FEEI-PRO%2F1470%2F2012/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//SFRH%2FBPD%2F94160%2F2013/PT
oaire.citation.conferencePlaceToulouse, Francept_PT
oaire.citation.titleHigh-Performance Computing in Remote Sensing Vpt_PT
oaire.citation.volume9646pt_PT
oaire.fundingStream5876
oaire.fundingStream3599-PPCDT
person.familyNameNascimento
person.givenNameJose
person.identifier.ciencia-id6912-6F61-1964
person.identifier.orcid0000-0002-5291-6147
person.identifier.ridE-6212-2015
person.identifier.scopus-author-id55920018000
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsclosedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublicationc7ffc6c0-1bdc-4f47-962a-a90dfb03073c
relation.isAuthorOfPublication.latestForDiscoveryc7ffc6c0-1bdc-4f47-962a-a90dfb03073c
relation.isProjectOfPublicatione2d2f1f5-1327-45b3-954c-2fdc843270e7
relation.isProjectOfPublicationf85a60e7-ec58-4ed3-922c-fd82e40c1b13
relation.isProjectOfPublicatione24a884a-f234-45c7-92b5-4df02ccdce9e
relation.isProjectOfPublication.latestForDiscoverye2d2f1f5-1327-45b3-954c-2fdc843270e7

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
GPU IMPLEMENTATION OF A HYPERSPECTRAL CODED APERTURE ALGORITHM FOR COMPRESSIVE SENSING.pdf
Size:
363.6 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: